Bibliography

Aaltonen, K. (2011). Project stakeholder analysis as an environmental interpretation process. International Journal of Project Management, 29(2), 165–183. https://doi.org/10.1016/j.ijproman.2010.02.001
Aastveit, K. A., Mitchell, J., Ravazzolo, F., & Dijk, H. K. van. (2019). The evolution of forecast density combinations in economics. Oxford University Press. https://doi.org/10.1093/acrefore/9780190625979.013.381
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., & Zhang, L. (2016). Deep learning with differential privacy.
Abel, G. J. (2018). Non-zero trajectories for long-run net migration assumptions in global population projection models. Demographic Research, 38(54), 1635–1662.
Abel, G. J., & Cohen, J. E. (2019). Bilateral international migration flow estimates for 200 countries. Scientific Data, 6(1), 82. https://doi.org/10.1038/s41597-019-0089-3
Abouarghoub, W., Nomikos, N. K., & Petropoulos, F. (2018). On reconciling macro and micro energy transport forecasts for strategic decision making in the tanker industry. Transportation Research Part E: Logistics and Transportation Review, 113, 225–238. https://doi.org/10.1016/j.tre.2017.10.012
AbouZahr, C., Savigny, D. de, Mikkelsen, L., Setel, P. W., Lozano, R., & Lopez, A. D. (2015). Towards universal civil registration and vital statistics systems: The time is now. The Lancet, 386(10001), 1407–1418. https://doi.org/10.1016/S0140-6736(15)60170-2
Abraham, B., & Box, G. E. P. (1979). Bayesian analysis of some outlier problems in time series. Biometrika, 66(2), 229–236. https://doi.org/10.2307/2335653
Abraham, B., & Chuang, A. (1989). Outlier detection and time series modeling. Technometrics, 31(2), 241–248. https://doi.org/10.2307/1268821
Abramson, B., & Finizza, A. (1991). Using belief networks to forecast oil prices. International Journal of Forecasting, 7(3), 299–315.
Abramson, B., & Finizza, A. (1995). Probabilistic forecasts from probabilistic models: A case study in the oil market. International Journal of Forecasting, 11(1), 63–72.
Abramson, G., & Zanette, D. H. (1998). Statistics of extinction and survival in lotka–volterra systems. Physical Review E, 57, 4572–4577.
Achen, C. H., & Phillips Shively, W. (1995). Cross-Level inference. University of Chicago Press.
Acquaviva, A., Apiletti, D., Attanasio, A., Baralis, E., Castagnetti, F. B., Cerquitelli, T., … Patti, E. (2015). Enhancing energy awareness through the analysis of thermal energy consumption. In EDBT/ICDT workshops (pp. 64–71).
Adams, W., & Michael, V. (1987). Short-term forecasting of passenger demand and some application in quantas. In AGIFORS symposium proc (Vol. 27).
Afanasyev, D. O., & Fedorova, E. A. (2019). On the impact of outlier filtering on the electricity price forecasting accuracy. Applied Energy, 236, 196–210. https://doi.org/10.1016/j.apenergy.2018.11.076
Agarwal, A., Dahleh, M., & Sarkar, T. (2019). A marketplace for data: An algorithmic solution. In Proceedings of the 2019 ACM conference on economics and computation (pp. 701–726).
Aggarwal, C., & Zhai, C. (2012). Mining text data. Springer Science & Business Media.
Agnolucci, P. (2009). Volatility in crude oil futures: A comparison of the predictive ability of GARCH and implied volatility models. Energy Economics, 31(2), 316–321.
Ahlburg, D. A., & Vaupel, J. W. (1990). Alternative projections of the U.S. population. Demography, 27(4), 639–652.
Ahmad, A. S., Hassan, M. Y., Abdullah, M. P., Rahman, H. A., Hussin, F., Abdullah, H., & Saidur, R. (2014). A review on applications of ANN and SVM for building electrical energy consumption forecasting. Renewable and Sustainable Energy Reviews, 33, 102–109. https://doi.org/https://doi.org/10.1016/j.rser.2014.01.069
Ahmad, A., Javaid, N., Mateen, A., Awais, M., & Khan, Z. A. (2019). Short-Term load forecasting in smart grids: An intelligent modular approach. Energies, 12(1), 164. https://doi.org/10.3390/en12010164
Ahmad, M. W., Mourshed, M., & Rezgui, Y. (2017). Trees vs neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption. Energy and Buildings, 147, 77–89.
Aizenman, J., & Jinjarak, Y. (2013). Real Estate Valuation, Current Account and Credit Growth Patterns, Before and After the 2008-9 Crisis (Working paper series No. 19190). National Bureau of Economic Research.
Aı̈t-Sahalia, Y., Cacho-Diaz, J., & Laeven, R. J. A. (2015). Modeling financial contagion using mutually exciting jump processes. Journal of Financial Economics, 117(3), 585–606. https://doi.org/10.1016/j.jfineco.2015.03.002
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csáki (Eds.), Proceedings of the second international symposium on information theory (pp. 267–281). Budapest: Csáki.
Akouemo, H. N., & Povinelli, R. J. (2016). Probabilistic anomaly detection in natural gas time series data. International Journal of Forecasting, 32(3), 948–956.
Akram, F., Binning, A., & Maih, J. (2015). Joint prediction bands for macroeconomic risk management (No. No 5/2016). Centre for Applied Macro-; Petroleum economics (CAMP) Working Paper Series.
Aksin, Z., Armony, M., & Mehrotra, V. (2007). The modern call center: A multi-disciplinary perspective on operations management research. Production and Operations Management, 16(6), 665–688.
Aktekin, T., & Soyer, R. (2011). Call center arrival modeling: A Bayesian state-space approach. Naval Research Logistics, 58(1), 28–42.
Al-Azzani, M. A., Davari, S., & England, T. J. (2020). An empirical investigation of forecasting methods for ambulance calls-a case study. Health Systems, 1–18.
Albon, C. (2018). Python machine learning cookbook. O’Reilly UK Ltd.
Albulescu, C. T., Tiwari, A. K., & Ji, Q. (2020). Copula-based local dependence among energy, agriculture and metal commodities markets. Energy, 202, 117762. https://doi.org/10.1016/j.energy.2020.117762
Albuquerquemello, V. P. de, Medeiros, R. K. de, Nóbrega Besarria, C. da, & Maia, S. F. (2018). Forecasting crude oil price: Does exist an optimal econometric model? Energy, 155, 578–591.
Aldor-Noiman, S., Feigin, P. D., & Mandelbaum, A. (2009). Workload forecasting for a call center: Methodology and a case study. The Annals of Applied Statistics, 3(4), 1403–1447.
Alexandrov, A., Benidis, K., Bohlke-Schneider, M., Flunkert, V., Gasthaus, J., Januschowski, T., … Wang, Y. (2019). GluonTS: Probabilistic time series models in python. Journal of Machine Learning Research.
Alho, Juha M., Hougaard Jensen, S. E., & Lassila, J. (Eds.). (2008). Uncertain demographics and fiscal sustainability. Cambridge University Press. https://doi.org/10.1017/CBO9780511493393
Alho, Juha M., & Spencer, B. D. (1985). Uncertain population forecasting. Journal of the American Statistical Association, 80(390), 306–314. https://doi.org/10.2307/2287887
Alho, J. M., & Spencer, B. D. (2005). Statistical Demography and Forecasting. New York: Springer.
Al-Homoud, M. S. (2001). Computer-aided building energy analysis techniques. Building and Environment, 36(4), 421–433. https://doi.org/https://doi.org/10.1016/S0360-1323(00)00026-3
Ali, M. M., & Boylan, J. E. (2011). Feasibility principles for downstream demand inference in supply chains. Journal of the Operational Research Society, 62(3), 474–482. https://doi.org/10.1057/jors.2010.82
Ali, Mohammad M., Boylan, J. E., & Syntetos, A. A. (2012). Forecast errors and inventory performance under forecast information sharing. International Journal of Forecasting, 28(4), 830–841. https://doi.org/10.1016/j.ijforecast.2010.08.003
Alizadeh, S., Brandt, M. W., & Diebold, F. X. (2002). Range-based estimation of stochastic volatility models. Journal of Finance, 57(3), 1047–1091. https://doi.org/10.1111/1540-6261.00454
Alkema, L., Raftery, A. E., Gerland, P., Clark, S. J., Pelletier, F., Buettner, T., & Heilig, G. K. (2011). Probabilistic projections of the total fertility rate for all countries. Demography, 48(3), 815–839. https://doi.org/10.1007/s13524-011-0040-5
Almeida, C., & Czado, C. (2012). Efficient Bayesian inference for stochastic time-varying copula models. Computational Statistics & Data Analysis, 56(6), 1511–1527.
Almeida Marques-Toledo, C. de, Degener, C. M., Vinhal, L., Coelho, G., Meira, W., Codeço, C. T., & Teixeira, M. M. (2017). Dengue prediction by the web: Tweets are a useful tool for estimating and forecasting dengue at country and city level. PLoS Neglected Tropical Diseases, 11(7), e0005729.
Almeida Pereira, G. A. de, & Veiga, Á. (2019). Periodic copula autoregressive model designed to multivariate streamflow time series modelling. Water Resources Management, 33(10), 3417–3431. https://doi.org/10.1007/s11269-019-02308-6
Aloui, R., Hammoudeh, S., & Nguyen, D. K. (2013). A time-varying copula approach to oil and stock market dependence: The case of transition economies. Energy Economics, 39, 208–221.
Alquist, R., Bhattarai, S., & Coibion, O. (2020). Commodity-price comovement and global economic activity. Journal of Monetary Economics, 112, 41–56. https://doi.org/10.1016/j.jmoneco.2019.02.004
Alquist, R., Kilian, L., & Vigfusson, R. J. (2013). Forecasting the price of oil. In Handbook of economic forecasting (Vol. 2, pp. 427–507). Elsevier.
Alvarado-Valencia, J. A., & Barrero, L. H. (2014). Reliance, trust and heuristics in judgmental forecasting. Computers in Human Behavior, 36, 102–113. https://doi.org/10.1016/j.chb.2014.03.047
Alvarado-Valencia, J., Barrero, L. H., Önkal, D., & Dennerlein, J. T. (2017). Expertise, credibility of system forecasts and integration methods in judgmental demand forecasting. International Journal of Forecasting, 33(1), 298–313.
Alvarez-Ramirez, J., Soriano, A., Cisneros, M., & Suarez, R. (2003). Symmetry/anti-symmetry phase transitions in crude oil markets. Physica A: Statistical Mechanics and Its Applications, 322, 583–596.
Amarasinghe, A., Wichmann, O., Margolis, H. S., & Mahoney, R. T. (2010). Forecasting dengue vaccine demand in disease endemic and non-endemic countries. Human Vaccines, 6(9), 745–753.
Amendola, A., Niglio, M., & Vitale, C. (2006). The moments of SETARMA models. Statistics & Probability Letters, 76(6), 625–633. https://doi.org/10.1016/j.spl.2005.09.016
Amisano, G., & Giacomini, R. (2007). Comparing density forecasts via weighted likelihood ratio tests. Journal of Business & Economic Statistics, 25(2), 177–190. https://doi.org/10.1198/073500106000000332
An, S., & Schorfheide, F. (2007). Bayesian analysis of DSGE models. Econometric Reviews, 26(2-4), 113–172. https://doi.org/10.1080/07474930701220071
Anderson, B. D. O., & Moore, J. B. (1979). Optimal filtering. Prentice-Hall: Englewood Cliffs, NJ.
Anderson, J. L. (1996). A method for producing and evaluating probabilistic forecasts from ensemble model integrations. Journal of Climate, 9, 1518–1530.
Anderson, V. O., & Nochmals, U. (1914). The elimination of spurious correlation due to position in time or space. Biometrika, 10(2/3), 269–279.
Andersson, E., Kühlmann-Berenzon, S., Linde, A., Schiöler, L., Rubinova, S., & Frisén, M. (2008). Predictions by early indicators of the time and height of the peaks of yearly influenza outbreaks in sweden. Scandinavian Journal of Public Health, 36(5), 475–482. https://doi.org/10.1177/1403494808089566
Andrade, J. R., Filipe, J., Reis, M., & Bessa, R. J. (2017). Probabilistic price forecasting for day-ahead and intraday markets: Beyond the statistical model. Sustainability, 9(1990), 1–29.
Andrawis, R. R., Atiya, A. F., & El-Shishiny, H. (2011). Combination of long term and short term forecasts, with application to tourism demand forecasting. International Journal of Forecasting, 27(3), 870–886.
Andrés, M. A., Peña, D., & Romo, J. (2002). Forecasting time series with sieve bootstrap. Journal of Statistical Planning and Inference, 100(1), 1–11.
Andrews, B. H., & Cunningham, S. M. (1995). LL bean improves call-center forecasting. Interfaces, 25(6), 1–13.
Andrews, R. L., Currim, I. S., Leeflang, P., & Lim, J. (2008). Estimating the SCAN* PRO model of store sales: HB, FM or just OLS? International Journal of Research in Marketing, 25(1), 22–33.
Andrieu, C., Doucet, A., & Holenstein, R. (2011). Particle Markov chain Monte Carlo. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(2), 269–342.
Andrieu, C., & Roberts, G. O. (2009). The pseudo-marginal approach for efficient Monte Carlo computations. Annals of Statistics, 37(2), 697–725.
Aneiros-Pérez, G., & Vieu, P. (2008). Nonparametric time series prediction: A semi-functional partial linear modeling. Journal of Multivariate Analysis, 99(5), 834–857.
Ang, A., & Bekaert, G. (2002). Short rate nonlinearities and regime switches. Journal of Economic Dynamics & Control, 26(7), 1243–1274. https://doi.org/10.1016/S0165-1889(01)00042-2
Ang, A., Bekaert, G., & Wei, M. (2008). The term structure of real rates and expected inflation. The Journal of Finance, 63(2), 797–849. https://doi.org/10.1111/j.1540-6261.2008.01332.x
Angelini, G., & De Angelis, L. (2019). Efficiency of online football betting markets. International Journal of Forecasting, 35(2), 712–721.
Angus, J. E. (1992). Asymptotic theory for bootstrapping the extremes. Communications in Statistics-Theory and Methods, 22(1), 15–30.
Anselin, L., & Tam Cho, W. K. (2002). Spatial effects and ecological inference. Political Analysis, 10(3), 276–297. https://doi.org/10.1093/pan/10.3.276
Antipov, A., & Meade, N. (2002). Forecasting call frequency at a financial services call centre. Journal of the Operational Research Society, 53(9), 953–960.
Antonakakis, N., Chatziantoniou, I., Floros, C., & Gabauer, D. (2018). The dynamic connectedness of U.K. Regional property returns. Urban Studies, 55(14), 3110–3134.
Apiletti, D., Baralis, E., Cerquitelli, T., Garza, P., Michiardi, P., & Pulvirenti, F. (2015). PaMPa-HD: A parallel MapReduce-based frequent pattern miner for high-dimensional data. In 2015 IEEE international conference on data mining workshop (ICDMW) (pp. 839–846). IEEE.
Apiletti, D., Baralis, E., Cerquitelli, T., Garza, P., Pulvirenti, F., & Michiardi, P. (2017). A parallel mapreduce algorithm to efficiently support itemset mining on high dimensional data. Big Data Research, 10, 53–69.
Apiletti, D., & Pastor, E. (2020). Correlating espresso quality with coffee-machine parameters by means of association rule mining. Electronics, 9(1), 100.
Apiletti, D., Pastor, E., Callà, R., & Baralis, E. (2020). Evaluating espresso coffee quality by means of time-series feature engineering. In EDBT/ICDT workshops.
Archak, N., Ghose, A., & Ipeirotis, P. (2011). Deriving the pricing power of product features by mining consumer reviews. Management Science, 57(8), 1485–1509.
Arinze, B. (1994). Selecting appropriate forecasting models using rule induction. Omega, 22(6), 647–658.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys, 4, 40–79.
Armstrong, C. (2017). Omnichannel retailing and demand planning. The Journal of Business Forecasting, 35(4), 10–15.
Armstrong, J. Scott. (2001). Combining forecasts. In Principles of forecasting (pp. 417–439). Springer, Boston, MA. https://doi.org/10.1007/978-0-306-47630-3\_19
Armstrong, Jon Scott. (2001). Principles of forecasting: A handbook for researchers and practitioners. Springer Science & Business Media.
Armstrong, J. Scott. (2007). Significance tests harm progress in forecasting. International Journal of Forecasting, 23(2), 321–327.
Armstrong, J. S., & Collopy, F. (1998). Integration of statistical methods and judgment for time series forecasting: Principles from empirical research. In G. Wright & P. Goodwin (Eds.), Forecasting with judgment (pp. 269–293). New York: John Wiley & Sons Ltd.
Armstrong, J. Scott, & Green, K. C. (2018). Forecasting methods and principles: Evidence-based checklists. Journal of Global Scholars of Marketing Science, 28(2), 103–159. https://doi.org/10.1080/21639159.2018.1441735
Armstrong, J. Scott, Green, K. C., & Graefe, A. (2015). Golden rule of forecasting: Be conservative. Journal of Business Research, 68(8), 1717–1731.
Arnott, R. D., Beck, N., Kalesnik, V., & West, J. (2016). How can “smart beta” go horribly wrong? SSRN:3040949.
Aron, J., & Muellbauer, J. (2020). Measuring excess mortality: The case of England during the Covid-19 pandemic. https://www.oxfordmartin.ox.ac.uk/publications/measuring-excess-mortality-the-case-of-england-during-the-covid-19-pandemic/; Oxford: INET Oxford Working Paper.
Arora, S., Taylor, J. W., & Mak, H.-Y. (2020). Probabilistic forecasting of patient waiting times in an emergency department. arXiv:2006.00335.
Arrhenius, S. A. (1896). On the influence of carbonic acid in the air upon the temperature of the ground. London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science (Fifth Series), 41, 237–275.
Artis, M., & Marcellino, M. (2001). Fiscal forecasting: The track record of the IMF, OECD and EC. The Econometrics Journal, 4(1), S20–S36.
Arvan, M., Fahimnia, B., Reisi, M., & Siemsen, E. (2019). Integrating human judgement into quantitative forecasting methods: A review. Omega, 86, 237–252. https://doi.org/10.1016/j.omega.2018.07.012
Asai, M. (2013). Heterogeneous asymmetric dynamic conditional correlation model with stock return and range. Journal of Forecasting, 32(5), 469–480. https://doi.org/10.1002/for.2252
Asai, M., & Brugal, I. (2013). Forecasting volatility via stock return, range, trading volume and spillover effects: The case of Brazil. North American Journal of Economics and Finance, 25, 202–213. https://doi.org/10.1016/j.najef.2012.06.005
Asimakopoulos, Stavros, & Dix, A. (2013). Forecasting support systems technologies-in-practice: A model of adoption and use for product forecasting. International Journal of Forecasting, 29(2), 322–336. https://doi.org/http://dx.doi.org/10.1016/j.ijforecast.2012.11.004
Asimakopoulos, S., Paredes, J., & Warmedinger, T. (2020). Real-time fiscal forecasting using mixed-frequency data. The Scandinavian Journal of Economics, 122, 369–390.
Askanazi, R., Diebold, F. X., Schorfheide, F., & Shin, M. (2018). On the comparison of interval forecasts. Journal of Time Series Analysis, 39(6), 953–965. https://doi.org/10.1111/jtsa.12426
Asness, C. S. (2016). INVITED EDITORIAL COMMENT: The siren song of factor timing aka “smart beta timing” aka “style timing.” Journal of Portfolio Management, 42(5), 1–6. Journal Article. https://doi.org/10.3905/jpm.2016.42.5.001
Assimakopoulos, V., & Nikolopoulos, K. (2000). The Theta model: A decomposition approach to forecasting. International Journal of Forecasting, 16(4), 521–530.
Assmus, G. (1984). New product forecasting. Journal of Forecasting, 3(2), 121–138. https://doi.org/10.1002/for.3980030202
Athanasopoulos, G., Ahmed, R. A., & Hyndman, R. J. (2009). Hierarchical forecasts for Australian domestic tourism. International Journal of Forecasting, 25(1), 146–166. https://doi.org/https://doi.org/10.1016/j.ijforecast.2008.07.004
Athanasopoulos, G., Hyndman, R. J., Kourentzes, N., & Petropoulos, F. (2017). Forecasting with temporal hierarchies. European Journal of Operational Research, 262(1), 60–74. https://doi.org/10.1016/j.ejor.2017.02.046
Athanasopoulos, G., Hyndman, R. J., Song, H., & Wu, D. C. (2011). The tourism forecasting competition. International Journal of Forecasting, 27(3), 822–844. https://doi.org/10.1016/j.ijforecast.2010.04.009
Athanasopoulos, G., Song, H., & Sun, J. A. (2018). Bagging in tourism demand modeling and forecasting. Journal of Travel Research, 57(1), 52–68.
Athey, S. (2018). The impact of machine learning on economics. In A. Agrawal, J. Gans, & A. Goldfarb (Eds.), The economics of artificial intelligence: An agenda (pp. 507–547). University of Chicago Press.
Atiya, Amir F. (2020). Why does forecast combination work so well? International Journal of Forecasting, 36(1), 197–200. https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.03.010
Atiya, Amir F., El-shoura, S. M., Shaheen, S. I., & El-sherif, M. S. (1999). A comparison between neural-network forecasting techniques–case study: River flow forecasting. IEEE Transactions on Neural Networks, 10(2), 402–409.
Atkinson, A. C., Riani, M., & Corbellini, A. (2021). The Box–Cox Transformation: Review and Extensions. Statistical Science, 36(2), 239–255.
Aue, A., Norinho, D. D., & Hörmann, S. (2015). On the prediction of stationary functional time series. Journal of the American Statistical Association, 110(509), 378–392.
Austin, C., & Kusumoto, F. (2016). The application of big data in medicine: Current implications and future directions. Journal of Interventional Cardiac Electrophysiology, 47(1), 51–59.
Avramidis, A. N., Deslauriers, A., & L’Ecuyer, P. (2004). Modeling daily arrivals to a telephone call center. Management Science, 50(7), 896–908.
Axelrod, R. (1997). Advancing the art of simulation in the social sciences. In Simulating social phenomena (pp. 21–40). Springer.
Ayton, P., Önkal, D., & McReynolds, L. (2011). Effects of ignorance and information on judgments and decisions. Judgment and Decision Making, 6(5), 381–391.
Azose, J. J., & Raftery, A. E. (2015). Bayesian probabilistic projection of international migration. Demography, 52(5), 1627–1650. https://doi.org/10.1007/s13524-015-0415-0
Azose, J. J., Ševčı́ková, H., & Raftery, A. E. (2016). Probabilistic population projections with migration uncertainty. Proceedings of the National Academy of Sciences of the United States of America, 113(23), 6460–6465. https://doi.org/10.1073/pnas.1606119113
Baade, R. A., & Matheson, V. A. (2016). Going for the Gold: The economics of the Olympics. Journal of Economic Perspectives, 30(2), 201–18.
Baardman, L., Levin, I., Perakis, G., & Singhvi, D. (2018). Leveraging comparables for new product sales forecasting. Production and Operations Management, 27(12), 2340–2343.
Babai, M. Zied, Ali, M. M., & Nikolopoulos, K. (2012). Impact of temporal aggregation on stock control performance of intermittent demand estimators: Empirical analysis. Omega, 40(6), 713–721. https://doi.org/10.1016/j.omega.2011.09.004
Babai, M. Z., Dallery, Y., Boubaker, S., & Kalai, R. (2019). A new method to forecast intermittent demand in the presence of inventory obsolescence. International Journal of Production Economics, 209, 30–41. https://doi.org/10.1016/j.ijpe.2018.01.026
Babai, M. Z., Syntetos, A., & Teunter, R. (2014). Intermittent demand forecasting: An empirical study on accuracy and the risk of obsolescence. International Journal of Production Economics, 157, 212–219.
Babai, M. Z., Tsadiras, A., & Papadopoulos, C. (2020). On the empirical performance of some new neural network methods for forecasting intermittent demand. IMA Journal of Management Mathematics, 31(3), 281–305. https://doi.org/10.1093/imaman/dpaa003
Babu, A., Levine, A., Ooi, Y. H., Pedersen, L. H., & Stamelos, E. (2020). Trends everywhere. Journal of Investment Management, 18(1), 52–68. Journal Article.
Bacchetti, A., & Saccani, N. (2012). Spare parts classification and demand forecasting for stock control: Investigating the gap between research and practice. Omega, 40(6), 722–737. https://doi.org/10.1016/j.omega.2011.06.008
Baccianella, S., Esuli, A., & Sebastiani, F. (2010). Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In Proceedings of the seventh international conference on language resources and evaluation (LREC’10) (Vol. 10, pp. 2200–2204).
Bacha, H., & Meyer, W. (1992). A neural network architecture for load forecasting. In IJCNN international joint conference on neural networks (Vol. 2, pp. 442–447).
Baecke, P., De Baets, S., & Vanderheyden, K. (2017). Investigating the added value of integrating human judgement into statistical demand forecasting systems. International Journal of Production Economics, 191, 85–96. https://doi.org/10.1016/j.ijpe.2017.05.016
Baicker, K., Chandra, A., & Skinner, J. S. (2012). Saving money or just saving lives? Improving the productivity of US health care spending. Annual Review of Economics, 4(1), 33–56.
Baillie, R. T., & Bollerslev, T. (1992). Prediction in dynamic models with time-dependent conditional variances. Journal of Econometrics, 1–2(52), 91–113.
Baillie, R. T., Bollerslev, T., & Mikkelsen, H. O. (1996). Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 74(1), 3–30. https://doi.org/10.1016/S0304-4076(95)01749-6
Baker, J. (2021). Maximizing forecast value added through machine learning and nudges. Foresight: The International Journal of Applied Forecasting, 60.
Baker, S. R., Bloom, N., & Davis, S. J. (2016). Measuring economic policy uncertainty. The Quarterly Journal of Economics, 131(4), 1593–1636.
Balbo, N., Billari, F. C., & Mills, M. (2013). Fertility in advanced societies: A review of research. European Journal of Population, 29(1), 1–38. https://doi.org/10.1007/s10680-012-9277-y
Balke, N. S. (1993). Detecting level shifts in time series. Journal of Business & Economic Statistics, 11(1), 81–92. https://doi.org/10.1080/07350015.1993.10509934
Balke, N. S., & Fomby, T. B. (1997). Threshold cointegration. International Economic Review, 38(3), 627–645. https://doi.org/10.2307/2527284
Bańbura, M., Giannone, D., & Reichlin, L. (2010). Large bayesian vector auto regressions. Journal of Applied Econometrics, 25(1), 71–92. https://doi.org/10.1002/jae.1137
BańBura, M., Giannone, D., & Reichlin, L. (2011). Nowcasting (Chapter 7). In M. P. Clements & D. F. Hendry (Eds.), The oxford handbook of economic forecasting. Oxford University Press.
Bandara, K., Bergmeir, C., & Hewamalage, H. (2020). LSTM-MSNet: Leveraging forecasts on sets of related time series with multiple seasonal patterns. IEEE Transactions on Neural Networks and Learning Systems.
Bandara, K., Bergmeir, C., & Smyl, S. (2020). Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach. Expert Systems with Applications, 140, 112896.
Bandyopadhyay, S. (2009). A dynamic model of cross-category competition: Theory, tests and applications. Journal of Retailing, 85(4), 468–479.
Bangwayo-Skeete, P. F., & Skeete, R. W. (2015). Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach. Tourism Management, 46, 454–464. https://doi.org/10.1016/j.tourman.2014.07.014
Banks, J., Blundell, R., Oldfield, Z., & Smith, J. P. (2015). House price volatility and the housing ladder (Working paper series No. 21255). National Bureau of Economic Research.
Bannister, R. N., Chipilski, H. G., & Martinez-Alvarado, O. (2020). Techniques and challenges in the assimilation of atmospheric water observations for numerical weather prediction towards convective scales. Quarterly Journal of the Royal Meteorological Society, 146(726), 1–48.
Bansal, R., Tauchen, G., & Zhou, H. (2004). Regime shifts, risk premiums in the term structure, and the business cycle. Journal of Business & Economic Statistics, 22(4), 396–409. https://doi.org/10.1198/073500104000000398
Bansal, R., & Zhou, H. (2002). Term structure of interest rates with regime shifts. The Journal of Finance, 57(5), 1997–2043. https://doi.org/10.1111/0022-1082.00487
Banu, S., Hu, W., Hurst, C., & Tong, S. (2011). Dengue transmission in the asia-pacific region: Impact of climate change and socio-environmental factors. Tropical Medicine & International Health, 16(5), 598–607.
Bao, Y., Lee, T.-H., & Saltoglu, B. (2007). Comparing density forecast models. Journal of Forecasting, 26(3), 203–225.
Baptista, M., Sankararaman, S., Medeiros, I. P. de, Nascimento, C., Prendinger, H., & Henriques, E. M. P. (2018). Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modeling. Computers & Industrial Engineering, 115, 41–53. https://doi.org/10.1016/j.cie.2017.10.033
Barbetta, S., Coccia, G., Moramarco, T., Brocca, L., & Todini, E. (2017). The multi temporal/multi-model approach to predictive uncertainty assessment in real-time flood forecasting. Journal of Hydrology, 551, 555–576. https://doi.org/10.1016/j.jhydrol.2017.06.030
BarclayHedge. (2018). Survey: Majority of hedge fund pros use AI/Machine learning in investment strategies. https://www.barclayhedge.com/insider/barclayhedge-survey-majority-of-hedge-fund-pros-use-ai-machine-learning-in-investment-strategies.
Barker, J. (2020). Machine learning in M4: What makes a good unstructured model? International Journal of Forecasting, 36(1), 150–155. https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.06.001
Barnhart, C., & Cohn, A. (2004). Airline schedule planning: Accomplishments and opportunities. Manufacturing & Service Operations Management, 6(1), 3–22.
Barnhart, C., Fearing, D., & Vaze, V. (2014). Modeling passenger travel and delays in the national air transportation system. Operations Research, 62(3), 580–601.
Barnichon, R., & Garda, P. (2016). Forecasting unemployment across countries: The ins and outs. European Economic Review, 84, 165–183.
Barr, J. (2018). New – predictive scaling for EC2, powered by machine learning. https://aws.amazon.com/blogs/aws/new-predictive-scaling-for-ec2-powered-by-machine-learning.
Barron, A. R. (1994). Approximation and estimation bounds for artificial neural networks. Machine Learning, 14(1), 115–133.
Barroso, P. (2015). Momentum has its moments. Journal of Financial Economics, 116(1), 111–121. Journal Article. https://doi.org/10.1016/j.jfineco.2014.11.010
Barrow, D. K., & Crone, S. F. (2016a). A comparison of AdaBoost algorithms for time series forecast combination. International Journal of Forecasting, 32(4), 1103–1119.
Barrow, D. K., & Crone, S. F. (2016b). Cross-validation aggregation for combining autoregressive neural network forecasts. International Journal of Forecasting, 32(4), 1120–1137.
Barrow, D. K., & Kourentzes, N. (2016). Distributions of forecasting errors of forecast combinations: Implications for inventory management. International Journal of Production Economics, 177, 24–33.
Barrow, D., Kourentzes, N., Sandberg, R., & Niklewski, J. (2020). Automatic robust estimation for exponential smoothing: Perspectives from statistics and machine learning. Expert Systems with Applications, 160, 113637.
Bartelsman, E. J., Kurz, C. J., & Wolf, Z. (2011). Using Census Microdata to Forecast US Aggregate Productivity. Working Paper.
Bartelsman, E. J., & Wolf, Z. (2014). Forecasting aggregate productivity using information from firm-level data. Review of Economics and Statistics, 96(4), 745–755.
Bartezzaghi, E., Verganti, R., & Zotteri, G. (1999). A simulation framework for forecasting uncertain lumpy demand. International Journal of Production Economics, 59(1), 499–510. https://doi.org/10.1016/S0925-5273(98)00012-7
Bass, F. M. (1969). A new product growth model for consumer durables. Management Science, 15, 215–227.
Bass, Frank M., Gordon, K., Ferguson, T. L., & Githens, M. L. (2001). DIRECTV: Forecasting diffusion of a new technology prior to product launch. INFORMS Journal on Applied Analytics, 31(3S), S82–S93. https://doi.org/10.1287/inte.31.3s.82.9677
Bass, F. M., Krishnan, T., & Jain, D. (1994). Why the bass model fits without decision variables. Marketing Science, 13, 203–223.
Bassetti, F., Casarin, R., & Ravazzolo, F. (2018). Bayesian nonparametric calibration and combination of predictive distributions. Journal of the American Statistical Association, 113(522), 675–685.
Basturk, N., Borowska, A., Grassi, S., Hoogerheide, L., & Dijk, H. K. van. (2019). Forecast density combinations of dynamic models and data driven portfolio strategies. Journal of Econometrics, 210(1), 170–186.
Basu, S., Fernald, J. G., Oulton, N., & Srinivasan, S. (2003). The case of the missing productivity growth, or does information technology explain why productivity accelerated in the United States but not in the United Kingdom? NBER Macroeconomics Annual, 18, 9–63.
Bates, J. M., & Granger, C. W. J. (1969). The combination of forecasts. Journal of the Operational Research Society, 20(4), 451–468.
Baumeister, C., Guérin, P., & Kilian, L. (2015). Do high-frequency financial data help forecast oil prices? The MIDAS touch at work. International Journal of Forecasting, 31(2), 238–252.
Baumeister, C., & Kilian, L. (2015). Forecasting the real price of oil in a changing world: A forecast combination approach. Journal of Business & Economic Statistics, 33(3), 338–351.
Beare, B. K., Seo, J., & Seo, W. (2017). Cointegrated linear processes in Hilbert space. Journal of Time Series Analysis, 38(6), 1010–1027.
Becker, R., Hurn, S., & Pavlov, V. (2008). Modelling spikes in electricity prices. The Economic Record, 83(263), 371–382. https://doi.org/10.1111/j.1475-4932.2007.00427.x
Beckmann, J., & Schussler, R. (2016). Forecasting exchange rates under parameter and model uncertainty. Journal of International Money and Finance, 60, 267–288.
Beckmann, M., & Bobkoski, F. (1958). Airline demand: An analysis of some frequency distributions. Naval Research Logistics Quarterly, 5(1), 43–51.
Behera, M. K., Majumder, I., & Nayak, N. (2018). Solar photovoltaic power forecasting using optimized modified extreme learning machine technique. Engineering Science and Technology an International Journal, 21(3). https://doi.org/10.1016/j.jestch.2018.04.013
Bekaert, G., Hodrick, R. J., & Marshall, D. A. (2001). Peso problem explanations for term structure anomalies. Journal of Monetary Economics, 48(2), 241–270.
Bekiros, S. D., & Paccagnini, A. (2014). Bayesian forecasting with small and medium scale factor-augmented vector autoregressive DSGE models. Computational Statistics & Data Analysis, 71(C), 298–323.
Bekiros, S. D., & Paccagnini, A. (2015). Macroprudential Policy And Forecasting Using Hybrid DSGE Models With Financial Frictions And State Space Markov-Switching Tvp-Vars. Macroeconomic Dynamics, 19(7), 1565–1592.
Bekiros, S. D., & Paccagnini, A. (2016). Policy Oriented Macroeconomic Forecasting with Hybrid DGSE and Time Varying Parameter VAR Models. Journal of Forecasting, 35(7), 613–632.
Bekiros, S., Cardani, R., Paccagnini, A., & Villa, S. (2016). Dealing with financial instability under a DSGE modeling approach with banking intermediation: A predictability analysis versus TVP-VARs. Journal of Financial Stability, 26(C), 216–227. https://doi.org/10.1016/j.jfs.2016.07.006
Bekiros, S., & Paccagnini, A. (2015). Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model. Studies in Nonlinear Dynamics & Econometrics, 19(2), 107–136.
Bélanger, A., & Sabourin, P. (2017). Microsimulation and population dynamics: An introduction to modgen 12. Springer, Cham. https://doi.org/10.1007/978-3-319-44663-9
Beliën, J., & Forcé, H. (2012). Supply chain management of blood products: A literature review. European Journal of Operational Research, 217(1), 1–16. https://doi.org/10.1016/j.ejor.2011.05.026
Bell, F., & Smyl, S. (2018). Forecasting at Uber: An introduction. Retrieved from https://eng.uber.com/forecasting-introduction/
Ben Taieb, S. (2014). Machine learning strategies for Multi-Step-Ahead time series forecasting (PhD thesis). Free University of Brussels (ULB); Free University of Brussels (ULB).
Ben Taieb, S., & Atiya, A. F. (2015). A bias and variance analysis for Multistep-Ahead time series forecasting. IEEE Transactions on Neural Networks and Learning Systems, PP(99), 1–1.
Ben Taieb, S., Bontempi, G., Atiya, A. F., & Sorjamaa, A. (2012). A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert Systems with Applications, 39(8), 7067–7083.
Ben Taieb, S., & Hyndman, R. (2014). Boosting multi-step autoregressive forecasts. In Proceedings of the 31st international conference on machine learning (pp. 109–117).
Ben Taieb, S., Sorjamaa, A., & Bontempi, G. (2010). Multiple-output modeling for multi-step-ahead time series forecasting. Neurocomputing, 73(10-12), 1950–1957.
Ben Taieb, S., Taylor, J. W., & Hyndman, R. J. (2020). Hierarchical probabilistic forecasting of electricity demand with smart meter data. Journal of the American Statistical Association. https://doi.org/https://doi.org/10.1080/01621459.2020.1736081
Benati, L. (2007). Drift and breaks in labor productivity. Journal of Economic Dynamics and Control, 31(8), 2847–2877.
Bender, J., Sun, X., Thomas, R., & Zdorovtsov, V. (2018). The promises and pitfalls of factor timing. Journal of Portfolio Management, 44(4), 79–92. Journal Article. https://doi.org/10.3905/jpm.2018.44.4.079
Bendre, M., & Manthalkar, R. (2019). Time series decomposition and predictive analytics using MapReduce framework. Expert Systems with Applications, 116, 108–120.
Benidis, K., Rangapuram, S. S., Flunkert, V., Wang, B., Maddix, D., Turkmen, C., … Januschowski, T. (2020). Neural forecasting: Introduction and literature overview. arXiv:2004.10240.
Bennell, J., & Sutcliffe, C. (2004). Black-Scholes versus artificial neural networks in pricing FTSE 100 options. Intelligent Systems in Accounting, Finance & Management, 12(4), 243–260. https://doi.org/10.1002/isaf.254
Berdugo, V., Chaussin, C., Dubus, L., Hebrail, G., & Leboucher, V. (2011). Analog method for collaborative very-short-term forecasting of powergeneration from photovoltaic systems. In Next generation data mining summit (pp. 1–5). Athens, Greece.
Berg, J. E., Nelson, F. D., & Rietz, T. A. (2008). Prediction market accuracy in the long run. International Journal of Forecasting, 24(2), 285–300. https://doi.org/10.1016/j.ijforecast.2008.03.007
Berger, J. O. (1985). Statistical decision theory and bayesian analysis. Springer.
Bergmeir, C., & Benı́tez, J. M. (2012). On the use of cross-validation for time series predictor evaluation. Information Sciences, 191, 192–213.
Bergmeir, C., Hyndman, R. J., & Benı́tez, J. M. (2016). Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation. International Journal of Forecasting, 32(2), 303–312. https://doi.org/10.1016/j.ijforecast.2015.07.002
Bergmeir, C., Hyndman, R. J., & Koo, B. (2018). A note on the validity of cross-validation for evaluating autoregressive time series prediction. Computational Statistics & Data Analysis, 120, 70–83.
Berkowitz, J. (2001). Testing density forecasts, with applications to risk management. Journal of Business & Economic Statistics, 19(4), 465–474. https://doi.org/10.1198/07350010152596718
Berlinski, D. (2009). The devil’s delusion: Atheism and its scientific pretensions. Basic Books.
Bernanke, B. S., Boivin, J., & Eliasz, P. (2005). Measuring the effects of monetary policy: A factor-augmented vector autoregressive (FAVAR) approach. The Quarterly Journal of Economics, 120(1), 387–422.
Bernard, A. B., & Busse, M. R. (2004). Who wins the Olympic Games: Economic resources and medal totals. Review of Economics and Statistics, 86(1), 413–417.
Bernardini Papalia, R., & Fernandez Vazquez, E. (2020). Entropy-Based solutions for ecological inference problems: A composite estimator. Entropy, 22(7), 781. https://doi.org/10.3390/e22070781
Bernardo, J. M. (1984). Monitoring the 1982 spanish socialist victory: A bayesian analysis. Journal of the American Statistical Association, 79(387), 510–515. https://doi.org/10.1080/01621459.1984.10478077
Bernardo, J. M. (1994). Bayesian theory. Wiley.
Bernstein, R. (1995). Style investing. Book, New York: John Wiley & Sons.
Berry, L. R., & West, M. (2020). Bayesian forecasting of many count-valued time series. Journal of Business and Economic Statistics, 38(4), 872–887.
Bertsimas, D., & Pachamanova, D. (2008). Robust multiperiod portfolio management in the presence of transaction costs. Computers & Operations Research, 35(1), 3–17.
Bessa, Ricardo J., Miranda, V., Botterud, A., Zhou, Z., & Wang, J. (2012). Time-adaptive quantile-copula for wind power probabilistic forecasting. Renewable Energy, 40(1), 29–39.
Bessa, R. J., Möhrlen, C., Fundel, V., Siefert, M., Browell, J., Haglund El Gaidi, S., … Kariniotakis, G. (2017). Towards improved understanding of the applicability of uncertainty forecasts in the electric power industry. Energies, 10(9). https://doi.org/doi:10.3390/en10091402
Besse, P., Cardot, H., & Stephenson, D. (2000). Autoregressive forecasting of some functional climatic variations. Scandinavian Journal of Statistics, 27(4), 673–687.
Beyaztas, U., & Shang, H. L. (2019). Forecasting functional time series using weighted likelihood methodology. Journal of Statistical Computation and Simulation, 89(16), 3046–3060.
Bhansali, R. J., & Kokoszka, P. S. (2002). Computation of the forecast coefficients for multistep prediction of long-range dependent time series. International Journal of Forecasting, 18(2), 181–206.
Bianchi, L., Jarrett, J. E., & Hanumara, R. C. (1993). Forecasting incoming calls to telemarketing centers. The Journal of Business Forecasting, 12(2), 3.
Bianchi, L., Jarrett, J., & Hanumara, R. C. (1998). Improving forecasting for telemarketing centers by ARIMA modeling with intervention. International Journal of Forecasting, 14(4), 497–504.
Bianco, A. M., Garcı́a Ben, M., Martı́nez, E. J., & Yohai, V. J. (2001). Outlier detection in regression models with ARIMA errors using robust estimates. Journal of Forecasting, 20(8), 565–579. https://doi.org/10.1002/for.768
Bickel, J. E. (2007). Some comparisons among quadratic, spherical, and logarithmic scoring rules. Decision Analysis, 4(2), 49–65. https://doi.org/10.1287/deca.1070.0089
Bickel, Peter J., & Doksum, K. A. (1981). An analysis of transformations revisited. Journal of the American Statistical Association, 76(374), 296–311.
Bickel, Peter J., & Freedman, D. A. (1981). Some asymptotic theory for the bootstrap. The Annals of Statistics, 1196–1217.
Bielecki, T. R., & Rutkowski, M. (2013). Credit risk: Modeling, valuation and hedging. Springer Science & Business Media.
Biemer, P. P. (2010). Total survey error: Design, implementation, and evaluation. Public Opinion Quarterly, 74(5), 817–848. https://doi.org/10.1093/poq/nfq058
Bijak, Jakub. (2010). Forecasting international migration in europe: A bayesian view. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8897-0
Bijak, J., & Czaika, M. (2020). Black swans and grey rhinos: Migration policy under uncertainty. Migration Policy Practice, X(4), 14–20.
Bijak, Jakub, Disney, G., Findlay, A. M., Forster, J. J., Smith, P. W. F., & Wiśniowski, A. (2019). Assessing time series models for forecasting international migration: Lessons from the united kingdom. Journal of Forecasting, 38(6), 470–487. https://doi.org/10.1002/for.2576
Bijak, Jakub, & Wiśniowski, A. (2010). Bayesian forecasting of immigration to selected european countries by using expert knowledge. Journal of the Royal Statistical Society. Series A, 173(4), 775–796.
Billio, M., Casarin, R., Ravazzolo, F., & van Dijk, H. K. (2013). Time-varying combinations of predictive densities using nonlinear filtering. Journal of Econometrics, 177(2), 213–232. https://doi.org/https://doi.org/10.1016/j.jeconom.2013.04.009
Binder, C. C. (2017). Measuring uncertainty based on rounding: New method and application to inflation expectations. Journal of Monetary Economics, 90(C), 1–12.
Bisaglia, L., & Canale, A. (2016). Bayesian nonparametric forecasting for INAR models. Computational Statistics and Data Analysis, 100, 70–78.
Bisaglia, L., & Gerolimetto, M. (2019). Model-based INAR bootstrap for forecasting INAR(p) models. Computational Statistics, 34, 1815–1848.
Bishop, C. M. (2006). Pattern recognition and machine learning. Book, New York, N.Y.: Springer.
Bjerknes, V. (1904). Das problem der wettervorhersage, betrachtet vom standpunkte der mechanik und der physik. Meteorologische Zeitschrift, 21, 1–7.
Blanchard, O. J., & Kahn, C. M. (1980). The solution of linear difference models under rational expectations. Econometrica, 48(5), 1305–1311. https://doi.org/10.2307/1912186
Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American Statistical Association, 112(518), 859–877.
Bles, A. M. van der, Linden, S. van der, Freeman, A. L., Mitchell, J., Galvao, A. B., Zaval, L., & Spiegelhalter, D. J. (2019). Communicating uncertainty about facts, numbers and science. Royal Society Open Science, 6(5), 181870. https://doi.org/10.1098/rsos.181870
Bles, A. M. van der, Linden, S. van der, Freeman, A. L., & Spiegelhalter, D. J. (2020). The effects of communicating uncertainty on public trust in facts and numbers. Proceedings of the National Academy of Sciences, 117(14), 7672–7683. https://doi.org/10.1073/pnas.1913678117
Bo, R., & Li, F. (2012). Probabilistic LMP forecasting under AC optimal power flow framework: Theory and applications. Electric Power Systems Research, 88, 16–24. https://doi.org/10.1016/j.epsr.2012.01.013
Boccara, N. (2004). Modeling complex systems. New York: Springer-Verlag.
Bohk-Ewald, C., Li, P., & Myrskylä, M. (2018). Forecast accuracy hardly improves with method complexity when completing cohort fertility. Proceedings of the National Academy of Sciences of the United States of America, 115(37), 9187–9192. https://doi.org/10.1073/pnas.1722364115
Boje, D. M., & Murnighan, J. K. (1982). Group confidence pressures in iterative decisions. Management Science, 28(10), 1187–1196. https://doi.org/10.1287/mnsc.28.10.1187
Bojer, C. S., & Meldgaard, J. P. (2020). Kaggle’s forecasting competitions: An overlooked learning opportunity. International Journal of Forecasting.
Bolger, F., & Harvey, N. (1993). Context-sensitive heuristics in statistical reasoning. The Quarterly Journal of Experimental Psychology Section A, 46(4), 779–811. https://doi.org/10.1080/14640749308401039
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1
Bollerslev, T. (1987). A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return. The Review of Economics and Statistics, 69(3), 542–547. https://doi.org/10.2307/1925546
Bollerslev, T. (1990). Modelling the Coherence in Short-Run Nominal Exchange Rates: A Multivariate Generalized Arch Model. The Review of Economics and Statistics, 72(3), 498–505. https://doi.org/10.2307/2109358
Bonaccio, S., & Dalal, R. S. (2006). Advice taking and decision-making: An integrative literature review, and implications for the organizational sciences. Organizational Behavior and Human Decision Processes, 101(2), 127–151. https://doi.org/10.1016/j.obhdp.2006.07.001
Bonaldo, D. (1991). Competizione tra prodotti farmaceutici: Strumenti di previsione (Master’s thesis). University of Padua.
Boneva, L., Fawcett, N., Masolo, R. M., & Waldron, M. (2019). Forecasting the UK economy: Alternative forecasting methodologies and the role of off-model information. International Journal of Forecasting, 35(1), 100–120. https://doi.org/10.1016/j.ijforecast.2018
Bonham, C., & Cohen, R. (2001). To aggregate, pool, or neither: Testing the rational expectations hypothesis using survey data. Journal of Business & Economic Statistics, 190, 278–291.
Bontempi, G., & Ben Taieb, S. (2011). Conditionally dependent strategies for multiple-step-ahead prediction in local learning. International Journal of Forecasting, 27(3), 689–699.
Bontempi, G., Birattari, M., & Bersini, H. (1999). Local learning for iterated time series prediction. In International conference on machine learning (pp. 32–38). In.
Booij, N., Ris, R. C., & Holthuijsen, L. H. (1999). A third-generation wave model for coastal regions 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4), 7649–7666.
Boone, T., & Ganeshan, R. (2008). The value of information sharing in the retail supply chain: Two case studies. Foresight: The International Journal of Applied Forecasting, 9, 12–17.
Booth, H. (2006). Demographic forecasting: 1980 to 2005 in review. International Journal of Forecasting, 22(3), 547–581. https://doi.org/10.1016/j.ijforecast.2006.04.001
Booth, H., & Tickle, L. (2008). Mortality modelling and forecasting: A review of methods. Annals of Actuarial Science, 3(1-2), 3–43.
Bordalo, P., Gennaioli, N., Ma, Y., & Shleifer, A. (2018). Over-reaction in Macroeconomic Expectations ({NBER Working Papers} No. 24932). National Bureau of Economic Research, Inc.
Bordignon, S., Bunn, D. W., Lisi, F., & Nan, F. (2013). Combining day-ahead forecasts for british electricity prices. Energy Economics, 35, 88–103.
Bordley, R. F. (1982). The combination of forecasts: A Bayesian approach. Journal of the Operational Research Society, 33(2), 171–174.
Bork, L., & Møller, S. V. (2015). Forecasting house prices in the 50 states using dynamic model averaging and dynamic model selection. International Journal of Forecasting, 31(1), 63–78.
Bosq, D. (2000). Linear Processes in Function Spaces. New York: Lecture Notes in Statistics.
Bosq, Denis, & Blanke, D. (2007). Inference and Prediction in Large Dimensions. West Sussex, England: John Wiley & Sons.
Botimer, T. (1997). Select ideas on forecasting with sales relative to bucketing and “seasonality.” Company Report, Continental Airlines, Inc.
Bourdeau, M., Zhai, X. qiang, Nefzaoui, E., Guo, X., & Chatellier, P. (2019). Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society, 48, 101533. https://doi.org/https://doi.org/10.1016/j.scs.2019.101533
Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211–243.
Box, George E. P., Jenkins, G. M., & Reinsel, G. C. (2008). Time series analysis: Forecasting and control (4th ed.). New Jersey: Wiley.
Box, George, E. P., Jenkins, & Gwilym. (1976). Time series analysis forecasting and control. San Francisco, CA: Holden-Day.
Boylan, John E., & Babai, M. Z. (2016). On the performance of overlapping and non-overlapping temporal demand aggregation approaches. International Journal of Production Economics, 181, 136–144. https://doi.org/10.1016/j.ijpe.2016.04.003
Boylan, John E., & Syntetos, A. A. (2003). Intermittent demand forecasting: Size-interval methods based on averaging and smoothing. In C. C. Frangos (Ed.), Proceedings of the international conference on quantitative methods in industry and commerce (pp. 87–96). Athens: Technological Educational Institute.
Boylan, John E., & Syntetos, A. A. (2021). Intermittent demand forecasting - context, methods and applications. Wiley.
Boylan, J. E., Syntetos, A. A., & Karakostas, G. C. (2008). Classification for forecasting and stock control: A case study. Journal of the Operational Research Society, 59(4), 473–481.
Boylan, J., & Syntetos, A. (2006). Accuracy and accuracy implication metrics for intermittent demand. Foresight: The International Journal of Applied Forecasting, 4, 39–42.
Bozkurt, Ö. Ö., Biricik, G., & Tayşi, Z. C. (2017). Artificial neural network and SARIMA based models for power load forecasting in turkish electricity market. PloS One, 12(4), e0175915. https://doi.org/10.1371/journal.pone.0175915
Brandt, M. W., & Jones, C. S. (2006). Volatility forecasting with range-based EGARCH models. Journal of Business & Economic Statistics, 24(4), 470–486. https://doi.org/10.1198/073500106000000206
Brass, W. (1974). Perspectives in population prediction: Illustrated by the statistics of England and Wales. Journal of the Royal Statistical Society. Series A, 137(4), 532–583. https://doi.org/10.2307/2344713
Braumoeller, B. F. (2019). Only the dead: The persistence of war in the modern age. Oxford University Press.
Brehmer, J. R., & Gneiting, T. (2021). Scoring interval forecasts: Equal-tailed, shortest, and modal interval. Bernoulli, 27(3). https://doi.org/10.3150/20-bej1298
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. https://doi.org/10.1023/A:1018054314350
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Brennan, J. (2020). Can novices trust themselves to choose trustworthy experts? Reasons for (reserved) optimism. Social Epistemology, 34(3), 227–240. https://doi.org/10.1080/02691728.2019.1703056
Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly Weather Review, 78(1), 1–3. https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
Brighton, H., & Gigerenzer, G. (2015). The bias bias. Journal of Business Research, 68(8), 1772–1784.
Brito, M. P. de, & Laan, E. A. van der. (2009). Inventory control with product returns: The impact of imperfect information. European Journal of Operational Research, 194(1), 85–101. https://doi.org/10.1016/j.ejor.2007.11.063
Broer, T., & Kohlhas, A. (2018). Forecaster (Mis-)Behavior (CEPR Discussion Papers No. 12898). C.E.P.R. Discussion Papers.
Brooks, S., Gelman, A., Jones, G., & Meng, X. L. (2011). Handbook of Markov Chain Monte Carlo. Taylor & Francis.
Brown, A., Reade, J. J., & Vaughan Williams, L. (2019). When are prediction market prices most informative? International Journal of Forecasting, 35(1), 420–428. https://doi.org/10.1016/j.ijforecast.2018.05.005
Brown, G., Wyatt, J., Harris, R., & Yao, X. (2005). Diversity creation methods: A survey and categorisation. Information Fusion, 6(1), 5–20.
Brown, L., Gans, N., Mandelbaum, A., Sakov, A., Shen, H., Zeltyn, S., & Zhao, L. (2005). Statistical analysis of a telephone call center: A queueing-science perspective. Journal of the American Statistical Association, 100(469), 36–50.
Brücker, H., & Siliverstovs, B. (2006). On the estimation and forecasting of international migration: How relevant is heterogeneity across countries? Empirical Economics, 31(3), 735–754. https://doi.org/10.1007/s00181-005-0049-y
Brunetti, C., & Lildholdt, P. M. (2002). Return-based and range-based (co)variance estimation - with an application to foreign exchange markets. SSRN:296875.
Bryant, J., & Zhang, J. L. (2018). Bayesian demographic estimation and forecasting. CRC Press.
Bu, R., & McCabe, B. P. M. (2008). Model selection, estimation and forecasting in INAR(p) models: A likelihood-based Markov chain approach. International Journal of Forecasting, 24(1), 151–162.
Buchanan, B. G. (2019). Artificial intelligence in finance. London: The Alan Turing Institute.
Buckle, H. T. (1858). History of civilization in england (Vol. 1). John W. Parker; Son. https://doi.org/10.1017/CBO9781139094528
Budescu, D. V., & Wallsten, T. S. (1985). Consistency in interpretation of probabilistic phrases. Organizational Behavior and Human Decision Processes, 36(3), 391–405. https://doi.org/10.1016/0749-5978(85)90007-X
Bühlmann, P. (1997). Sieve bootstrap for time series. Bernoulli, 3(2), 123–148.
Buizza, R. (2018). Ensemble forecasting and the need for calibration. In Statistical postprocessing of ensemble forecasts (pp. 15–48). Elsevier.
Bunea, A. M., Della Posta, P., Guidolin, M., & Manfredi, P. (2020). What do adoption patterns of solar panels observed so far tell about governments’ incentive? Insights from diffusion models. Technological Forecasting and Social Change, 160, 120240.
Bunn, D. W. (1975). A Bayesian approach to the linear combination of forecasts. Journal of the Operational Research Society, 26(2), 325–329.
Bunn, D. W., & Salo, A. A. (1993). Forecasting with scenarios. European Journal of Operational Research, 68(3), 291–303. https://doi.org/10.1016/0377-2217(93)90186-Q
Burch, T. K. (2018). Model-Based demography: Essays on integrating data, technique and theory. Springer, Cham. https://doi.org/10.1007/978-3-319-65433-1
Bureau of Transportation Statistics. (2020). Reporting carrier on-time performance (1987 - present).
Burgman, M. A. (2016). Trusting judgements: How to get the best out of experts. Cambridge University Press.
Burman, P., Chow, E., & Nolan, D. (1994). A cross-validatory method for dependent data. Biometrika, 81(2), 351–358.
Burridge, P., & Robert Taylor, A. (2006). Additive outlier detection via extreme-value theory. Journal of Time Series Analysis, 27(5), 685–701.
Burton, J. W., Stein, M., & Jensen, T. B. (2020). A systematic review of algorithm aversion in augmented decision making. Journal of Behavioral Decision Making, 33(2), 220–239. https://doi.org/10.1002/bdm.2155
Busetti, F., & Marcucci, J. (2013). Comparing forecast accuracy: A Monte Carlo investigation. International Journal of Forecasting, 29(1), 13–27. https://doi.org/10.1016/j.ijforecast.2012.04.011
Butler, D., Butler, R., & Eakins, J. (2020). Expert performance and crowd wisdom: Evidence from english premier league predictions. European Journal of Operational Research, 288, 170–182.
Buys-Ballot, C. H. D. (1847). Les changements périodiques de temperature. Utrecht: Kemink Et Fils.
Byrne, Joseph P., Fazio, G., & Fiess, N. (2013). Primary commodity prices: Co-movements, common factors and fundamentals. Journal of Development Economics, 101, 16–26. https://doi.org/10.1016/j.jdeveco.2012.09.002
Byrne, Joseph P., Korobilis, D., & Ribeiro, P. J. (2016). Exchange rate predictability in a changing world. Journal of International Money and Finance, 62, 1–24.
Ca’ Zorzi, M., Cap, A., Mijakovic, A., & Rubaszek, M. (2020). The predictive power of equilibrium exchange rate models (Working Paper Series No. 2358). European Central Bank.
Ca’ Zorzi, M., Kolasa, M., & Rubaszek, M. (2017). Exchange rate forecasting with DSGE models. Journal of International Economics, 107(C), 127–146.
Ca’ Zorzi, M., Muck, J., & Rubaszek, M. (2016). Real exchange rate forecasting and PPP: This time the random walk loses. Open Economies Review, 27(3), 585–609.
Ca’ Zorzi, M., & Rubaszek, M. (2020). Exchange rate forecasting on a napkin. Journal of International Money and Finance, 104, 102168.
Cai, J. (1994). A Markov model of Switching-Regime ARCH. Journal of Business & Economic Statistics, 12(3), 309–316. https://doi.org/10.2307/1392087
Cairns, A. J. G., Blake, D., Dowd, K., Coughlan, G. D., Epstein, D., Ong, A., & Balevich, I. (2009). A quantitative comparison of stochastic mortality models using data from England and Wales and the United States. North American Actuarial Journal, 13(1), 1–35.
Calvo, E., & Escolar, M. (2003). The local voter: A geographically weighted approach to ecological inference. American Journal of Political Science, 47(1), 189–204. https://doi.org/10.1111/1540-5907.00013
Campbell, J. Y., & Thompson, S. B. (2008). Predicting excess stock returns out of sample: Can anything beat the historical average? Review of Financial Studies, 21(4), 1509–1531.
Canale, A., & Ruggiero, M. (2016). Bayesian nonparametric forecasting of monotonic functional time series. Electronic Journal of Statistics, 10(2), 3265–3286.
Cappelen, Å., Skjerpen, T., & Tønnessen, M. (2015). Forecasting immigration in official population projections using an econometric model. International Migration Review, 49(4), 945–980. https://doi.org/10.1111/imre.12092
Cardani, R., Paccagnini, A., & Villa, S. (2015). Forecasting in a DSGE Model with Banking Intermediation: Evidence from the US (Working Paper No. 292). University of Milano-Bicocca, Department of Economics.
Cardani, R., Paccagnini, A., & Villa, S. (2019). Forecasting with instabilities: An application to DSGE models with financial frictions. Journal of Macroeconomics, 61(C), 103133. https://doi.org/10.1016/j.jmacro.2019.103
Carlstein, E. (1990). Resampling techniques for stationary time-series: Some recent developments. North Carolina State University, Department of Statistics.
Carmo, J. L., & Rodrigues, A. J. (2004). Adaptive forecasting of irregular demand processes. Engineering Applications of Artificial Intelligence, 17(2), 137–143. https://doi.org/https://doi.org/10.1016/j.engappai.2004.01.001
Carnevale, Claudio, Angelis, E. D., Finzi, G., Turrini, E., & Volta, M. (2020). Application of data fusion techniques to improve air quality forecast: A case study in the northern Italy. Atmosphere, 11(3). https://doi.org/10.3390/atmos11030244
Carnevale, C., Finzi, G., Pederzoli, A., Turrini, E., & Volta, M. (2018). An integrated data-driven/data assimilation approach for the forecast of PM10 levels in northern Italy. In C. Mensink & G. Kallos (Eds.), Air pollution modeling and its application XXV (pp. 225–229). Springer International Publishing.
Carnevale, C., Finzi, G., Pisoni, E., & Volta, M. (2016). Lazy learning based surrogate models for air quality planning. Environmental Modelling and Software, 83, 47–57.
Carriero, A., Clements, M. P., & Galvão, A. B. (2015). Forecasting with Bayesian multivariate vintage-based VARs. International Journal of Forecasting, 31(3), 757–768.
Carroll, R. (2003). The skeptic’s dictionary: A collection of strange beliefs, amusing deceptions, and dangerous delusions. Wiley.
Carson, R., Cenesizoglu, T., & Parker, R. (2011). Forecasting (aggregate) demand for US commercial air travel. International Journal of Forecasting, 27(3), 923–941.
Caruana, R. (1997). Multitask learning. Machine Learning, 28(1), 41–75.
Carvalho, C. M., Polson, N. G., & Scott, J. G. (2010). The horseshoe estimator for sparse signals. Biometrika, 97(2), 465–480.
Carvalho, T. P., Soares, F. A. A. M. N., Vita, R., Francisco, R. da P., Basto, J. P., & Alcalá, S. G. S. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 137, 106024. https://doi.org/10.1016/j.cie.2019.106024
Casals, J., Garcia-Hiernaux, A., Jerez, M., Sotoca, S., & Trindade, A. (2016). State-space methods for time series analysis: Theory, applications and software. Chapman-Hall / CRC Press.
Casarin, R., Leisen, F., Molina, G., & Horst, E. ter. (2015). A Bayesian beta Markov random field calibration of the term structure of implied risk neutral densities. Bayesian Analysis, 10(4), 791–819.
Castle, Jennifer L., Clements, M. P., & Hendry, D. F. (2015). Robust Approaches to Forecasting. International Journal of Forecasting, 31(1), 99–112.
Castle, J. L., Doornik, J. A., & Hendry, D. F. (2018). Selecting a model for forecasting (Working paper). Oxford University: Economics Department.
Castle, J. L., Doornik, J. A., & Hendry, D. F. (2020a). Modelling non-stationary “big data.” International Journal of Forecasting.
Castle, J. L., Doornik, J. A., & Hendry, D. F. (2020b). Robust discovery of regression models (Working Paper 2020-{W}04). Oxford University: Nuffield College.
Castle, J. L., Doornik, J. A., & Hendry, D. F. (2021). The value of robust statistical forecasts in the COVID-19 pandemic. National Institute Economic Review, in press.
Castle, J. L., Doornik, J. A., Hendry, D. F., & Pretis, F. (2015b). Detecting location shifts during model selection by step-indicator saturation. Econometrics, 3(2), 240–264.
Castle, J. L., Doornik, J. A., Hendry, D. F., & Pretis, F. (2015a). Detecting Location Shifts during Model Selection by Step-Indicator Saturation. Econometrics, 3(2), 240–264.
Castle, Jennifer L., Fawcett, N. W., & Hendry, D. F. (2010). Forecasting with equilibrium-correction models during structural breaks. Journal of Econometrics, 158(1), 25–36.
Castle, J. L., & Hendry, D. F. (2010). Nowcasting from disaggregates in the face of location shifts. Journal of Forecasting, 29, 200–214.
Castle, J. L., & Hendry, D. F. (2020a). Climate Econometrics: An Overview. Foundations and Trends in Econometrics, 10, 145–322.
Castle, J. L., & Hendry, D. F. (2020b). Identifying the causal role of CO2 during the Ice Ages (Discussion Paper 898 ). Oxford University: Economics Department.
Castle, J. L., Hendry, D. F., & Kitov, O. I. (2018). Forecasting and nowcasting macroeconomic variables: A methodological overview. In EuroStat (Ed.), Handbook on rapid estimates (pp. 53–107). Brussels: UN/EuroStat.
Castle, J. L., Hendry, D. F., & Martinez, A. B. (2020). The paradox of stagnant real wages yet rising “living standards” in the UK. VoxEU.
Caswell, H. (2019a). Sensitivity analysis: Matrix methods in demography and ecology. Springer, Cham. https://doi.org/10.1007/978-3-030-10534-1
Caswell, H. (2019b). The formal demography of kinship: A matrix formulation. Demographic Research, 41(24), 679–712.
Caswell, H. (2020). The formal demography of kinship II: Multistate models, parity, and sibship. Demographic Research, 42(38), 1097–1146.
Catalán, B., & Trı́vez, F. J. (2007). Forecasting volatility in GARCH models with additive outliers. Quantitative Finance, 7(6), 591–596. https://doi.org/10.1080/14697680601116872
Cavalcante, L., Bessa, R. J., Reis, M., & Browell, J. (2016). LASSO vector autoregression structures for very short-term wind power forecasting. Wind Energy, 20, 657–675. https://doi.org/10.1002/we.2029
Cazelles, B., Chavez, M., McMichael, A. J., & Hales, S. (2005). Nonstationary influence of el nino on the synchronous dengue epidemics in Thailand. PLoS Medicine, 2(4), e106.
Cederman, L.-E. (2003). Modeling the size of wars: From billiard balls to sandpiles. The American Political Science Review, 97(1), 135–150.
Ceron, A., Curini, L., & Iacus, S. M. (2016). Politics and big data: Nowcasting and forecasting elections with social media. Routledge.
Chae, Y. T., Horesh, R., Hwang, Y., & Lee, Y. M. (2016). Artificial neural network model for forecasting sub-hourly electricity usage in commercial buildings. Energy and Buildings, 111, 184–194. https://doi.org/https://doi.org/10.1016/j.enbuild.2015.11.045
Chakraborty, T., Chattopadhyay, S., & Ghosh, I. (2019). Forecasting dengue epidemics using a hybrid methodology. Physica A: Statistical Mechanics and Its Applications, 527, 121266.
Chan, C. K., Kingsman, B. G., & Wong, H. (1999). The value of combining forecasts in inventory management–a case study in banking. European Journal of Operational Research, 117(2), 199–210.
Chan, F., & Pauwels, L. L. (2018). Some theoretical results on forecast combinations. International Journal of Forecasting, 34(1), 64–74.
Chan, J. C., & Yu, X. (2020). Fast and accurate variational inference for large Bayesian VARs with stochastic volatility. CAMA Working Paper.
Chan, J. S. K., Lam, C. P. Y., Yu, P. L. H., Choy, S. T. B., & Chen, C. W. S. (2012). A Bayesian conditional autoregressive geometric process model for range data. Computational Statistics and Data Analysis, 56(11), 3006–3019. https://doi.org/10.1016/j.csda.2011.01.006
Chan, K. S., & Tong, H. (1986). On estimating thresholds in autoregressive models. Journal of Time Series Analysis, 7(3), 179–190. https://doi.org/10.1111/j.1467-9892.1986.tb00501.x
Chan, N. H., & Genovese, C. R. (2001). A comparison of linear and nonlinear statistical techniques in performance attribution. IEEE Transactions on Neural Networks, 12(4), 922–928.
Chandola, V., Banerjee, A., & Kumar, V. (2007). Outlier detection: A survey. ACM Computing Surveys, 14, 15.
Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41(3), 1–58.
Chang, Y., Kim, C. S., & Park, J. (2016). Nonstationarity in time series of state densities. Journal of Econometrics, 192(1), 152–167.
Chaouch, M. (2014). Clustering-Based improvement of nonparametric functional time series forecasting: Application to Intra-Day Household-Level load curves. IEEE Transactions on Smart Grid, 5(1), 411–419. https://doi.org/10.1109/TSG.2013.2277171
Chase, C. (2021). Assisted demand planning using machine learning. In M. Gilliland, L. Tashman, & U. Sglavo (Eds.), Business forecasting: The emerging role of artificial intelligence and machine learning (pp. 110–114). Wiley.
Chatfield, C. (1986). Simple is best? International Journal of Forecasting, 2(4), 401–402. https://doi.org/10.1016/0169-2070(86)90086-5
Chatziantoniou, I., Degiannakis, S., Eeckels, B., & Filis, G. (2016). Forecasting tourist arrivals using origin country macroeconomics. Applied Economics, 48(27), 2571–2585. https://doi.org/10.1080/00036846.2015.1125434
Chavez-Demoulin, V., Davison, A. C., & McNeil, A. J. (2005). Estimating value-at-risk: A point process approach. Quantitative Finance, 5(2), 227–234. https://doi.org/10.1080/14697680500039613
Checchi, F., & Roberts, L. (2005). Interpreting and using mortality data in humanitarian emergencies. Humanitarian Practice Network, 52.
Chen, Cathy W. S., Chiang, T. C., & So, M. K. P. (2003). Asymmetrical reaction to US stock-return news: Evidence from major stock markets based on a double-threshold model. Journal of Economics and Business, 55(5), 487–502. https://doi.org/10.1016/S0148-6195(03)00051-1
Chen, Cathy W. S., Gerlach, R., Hwang, B. B. K., & McAleer, M. (2012). Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range. International Journal of Forecasting, 28(3), 557–574. https://doi.org/10.1016/j.ijforecast.2011.12.004
Chen, Cathy W. S., Gerlach, R., & Lin, E. M. H. (2008). Volatility forecasting using threshold heteroskedastic models of the intra-day range. Computational Statistics and Data Analysis, 52(6), 2990–3010. https://doi.org/10.1016/j.csda.2007.08.002
Chen, Cathy W. S., & So, M. K. P. (2006). On a threshold heteroscedastic model. International Journal of Forecasting, 22(1), 73–89. https://doi.org/10.1016/j.ijforecast.2005.08.001
Chen, C., & Liu, L.-M. (1993a). Forecasting time series with outliers. Journal of Forecasting, 12(1), 13–35.
Chen, C., & Liu, L.-M. (1993b). Joint estimation of model parameters and outlier effects in time series. Journal of the American Statistical Association, 88(421), 284–297. https://doi.org/10.1080/01621459.1993.10594321
Chen, J., Li, K., Rong, H., Bilal, K., Li, K., & Philip, S. Y. (2019). A periodicity-based parallel time series prediction algorithm in cloud computing environments. Information Sciences, 496, 506–537.
Chen, M.-F., Wang, R.-H., & Hung, S.-L. (2015). Predicting health-promoting self-care behaviors in people with pre-diabetes by applying Bandura social learning theory. Applied Nursing Research, 28(4), 299–304.
Chen, R. (1995). Threshold variable selection in open-loop threshold autoregressive models. Journal of Time Series Analysis, 16(5), 461–481. https://doi.org/10.1111/j.1467-9892.1995.tb00247.x
Chen, R., Yang, L., & Hafner, C. (2004). Nonparametric multistep-ahead prediction in time series analysis. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 66(3), 669–686.
Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 785–794). ACM.
Chen, Yitian, Kang, Y., Chen, Y., & Wang, Z. (2020). Probabilistic forecasting with temporal convolutional neural network. Neurocomputing, 399, 491–501.
Chen, Ying, Marron, J. S., & Zhang, J. (2019). Modeling seasonality and serial dependence of electricity price curves with warping functional autoregressive dynamics. The Annals of Applied Statistics, 13(3), 1590–1616. https://doi.org/10.1214/18-AOAS1234
Cheng, C., Yu, L., & Chen, L. J. (2012). Structural nonlinear damage detection based on ARMA-GARCH model. Applied Mechanics and Materials, 204-208, 2891–2896.
Cheng, G., & Yang, Y. (2015). Forecast combination with outlier protection. International Journal of Forecasting, 31(2), 223–237. https://doi.org/10.1016/j.ijforecast.2014.06.004
Cheung, Y.-W., Chinn, M. D., & Pascual, A. G. (2005). Empirical exchange rate models of the nineties: Are any fit to survive? Journal of International Money and Finance, 24(7), 1150–1175.
Cheung, Y.-W., Chinn, M. D., Pascual, A. G., & Zhang, Y. (2019). Exchange rate prediction redux: New models, new data, new currencies. Journal of International Money and Finance, 95, 332–362.
Chevillon, G. (2007). Direct multi-step estimation and forecasting. Journal of Economic Surveys, 21(4), 746–785.
Chew, V. (1968). Simultaneous prediction intervals. Technometrics, 10(2), 323–330.
Chiang, M. H., & Wang, L. M. (2011). Volatility contagion: A range-based volatility approach. Journal of Econometrics, 165(2), 175–189. https://doi.org/10.1016/j.jeconom.2011.07.004
Chicco, G., Cocina, V., Di Leo, P., Spertino, F., & Massi Pavan, A. (2015). Error assessment of solar irradiance forecasts and AC power from energy conversion model in Grid-Connected photovoltaic systems. Energies, 9(1), 8. https://doi.org/10.3390/en9010008
Chinco, A., Clark-Joseph, A. D., & Ye, M. (2019). Sparse signals in the cross-section of returns. Journal of Finance, 74(1), 449–492.
Chiroma, H., Abdulkareem, S., & Herawan, T. (2015). Evolutionary Neural Network model for West Texas Intermediate crude oil price prediction. Applied Energy, 142, 266–273.
Choi, E., Özer, Ö., & Zheng, Y. (2020). Network trust and trust behaviors among executives in supply chain interactions. Management Science.
Chong, Y. Y., & Hendry, D. F. (1986). Econometric evaluation of linear macro-economic models. The Review of Economic Studies, 53(4), 671–690. https://doi.org/10.2307/2297611
Chou, R. Y., & Cai, Y. (2009). Range-based multivariate volatility model with double smooth transition in conditional correlation. Global Finance Journal, 20(2), 137–152. https://doi.org/10.1016/j.gfj.2008.12.001
Chou, R. Y., Chou, H., & Liu, N. (2015). Range volatility: A review of models and empirical studies. In C. F. ;. Lee & J. C. Lee (Eds.), Handbook of financial econometrics and statistics (pp. 2029–2050). Springer New York. https://doi.org/10.1007/978-1-4614-7750-1_74
Chou, R. Y., & Liu, N. (2010). The economic value of volatility timing using a range-based volatility model. Journal of Economic Dynamics and Control, 34(11), 2288–2301. https://doi.org/10.1016/j.jedc.2010.05.010
Chou, R. Y.-T. (2005). Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model. Journal of Money, Credit, and Banking, 37(3), 561–582. https://doi.org/10.1353/mcb.2005.0027
Chou, R. Y., Wu, C. C., & Liu, N. (2009). Forecasting time-varying covariance with a range-based dynamic conditional correlation model. Review of Quantitative Finance and Accounting, 33(4), 327–345. https://doi.org/10.1007/s11156-009-0113-3
Choudhury, A., & Urena, E. (2020). Forecasting hourly emergency department arrival using time series analysis. British Journal of Healthcare Management, 26(1), 34–43.
Christ, M., Braun, N., Neuffer, J., & Kempa-Liehr, A. W. (2018). Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh – a Python package). Neurocomputing, 307, 72–77.
Christensen, T. M., Hurn, A. S., & Lindsay, K. A. (2012). Forecasting spikes in electricity prices. International Journal of Forecasting, 28(2), 400–411. https://doi.org/10.1016/j.ijforecast.2011.02.019
Christensen, T., Hurn, S., & Lindsay, K. (2009). It never rains but it pours: Modeling the persistence of spikes in electricity prices. Energy Journal, 30(1), 25–48.
Christiano, L. J., Eichenbaum, M. S., & Trabandt, M. (2018). On DSGE models. Journal of Economic Perspectives, 32(3), 113–40. https://doi.org/10.1257/jep.32.3.113
Christoffersen, P., & Langlois, H. (2013). The joint dynamics of equity market factors. Journal of Financial and Quantitative Analysis, 48(5), 1371–1404. Journal Article. https://doi.org/10.1017/S0022109013000598
Chung, C., Niu, S.-C., & Sriskandarajah, C. (2012). A sales forecast model for short-life-cycle products: New releases at blockbuster. Production and Operations Management, 21(5), 851–873.
Chung, H., Kiley, M. T., & Laforte, J.-P. (2010). Documentation of the Estimated, Dynamic, Optimization-based (EDO) model of the U.S. economy: 2010 version (Finance and Economics Discussion Series No. 2010-29). Board of Governors of the Federal Reserve System (U.S.).
Cirillo, P., & Taleb, N. N. (2016a). Expected shortfall estimation for apparently infinite-mean models of operational risk. Quantitative Finance, 16(10), 1485–1494. https://doi.org/10.1080/14697688.2016.1162908
Cirillo, P., & Taleb, N. N. (2016b). On the statistical properties and tail risk of violent conflicts. Physica A: Statistical Mechanics and Its Applications, 452, 29–45. https://doi.org/10.1016/j.physa.2016.01.050
Cirillo, P., & Taleb, N. N. (2019). The decline of violent conflicts: What do the data really say? In A. Toje & B. N. V. Steen (Eds.), The causes of peace: What we know (pp. 57–86). The Causes of Peace: What We Know.
Claeskens, G., Magnus, J. R., Vasnev, A. L., & Wang, W. (2016). The forecast combination puzzle: A simple theoretical explanation. International Journal of Forecasting, 32(3), 754–762.
Clark, D. A. (1990). Verbal uncertainty expressions: A critical review of two decades of research. Current Psychology, 9(3), 203–235. https://doi.org/10.1007/BF02686861
Clark, T. E., & McCracken, M. W. (2001). Tests of equal forecast accuracy and encompassing for nested models. Journal of Econometrics, 105(1), 85–110. https://doi.org/10.1016/S0304-4076(01)00071-9
Clark, T. E., & McCracken, M. W. (2009). Tests of equal predictive ability with real-time data. Journal of Business & Economic Statistics, 27(4), 441–454. https://doi.org/10.1198/jbes.2009.07204
Clark, T., & McCracken, M. (2013). Advances in forecast evaluation. In Handbook of economic forecasting (Vol. 2, pp. 1107–1201). Elsevier. https://doi.org/10.1016/B978-0-444-62731-5.00020-8
Clark, T., & West, K. (2006). Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis. Journal of Econometrics, 135(1-2), 155–186.
Clauset, Aaron. (2018). Trends and fluctuations in the severity of interstate wars. Science Advances, 4(2), eaao3580. https://doi.org/10.1126/sciadv.aao3580
Clauset, A., & Gleditsch, K. S. (2018). Trends in conflicts: What do we know and what can we know? In A. Gheciu & W. C. Wohlforth (Eds.), The oxford handbook of international security. Oxford University Press.
Cleave, N., Brown, P. J., & Payne, C. D. (1995). Evaluation of methods for ecological inference. Journal of the Royal Statistical Society, Series A, 158(1), 55–72. https://doi.org/10.2307/2983403
Clemen, R. T. (1989). Combining forecasts: A review and annotated bibliography. International Journal of Forecasting, 5(4), 559–583. https://doi.org/10.1016/0169-2070(89)90012-5
Clemen, R. T. (2008). Comment on cooke’s classical method. Reliability Engineering & System Safety, 93(5), 760–765. https://doi.org/10.1016/j.ress.2008.02.003
Clemen, R. T., & Winkler, R. L. (1986). Combining economic forecasts. Journal of Business & Economic Statistics, 4(1), 39–46.
Clements, A. E., Herrera, R., & Hurn, A. S. (2015). Modelling interregional links in electricity price spikes. Energy Economics, 51, 383–393. https://doi.org/10.1016/j.eneco.2015.07.014
Clements, M. P. (2009). Internal consistency of survey respondents’ forecasts: Evidence based on the Survey of Professional Forecasters. In J. L. Castle & N. Shephard (Eds.), The methodology and practice of econometrics. A festschrift in honour of david f. Hendry. Chapter 8 (pp. 206–226). Oxford: Oxford University Press.
Clements, M. P. (2010). Explanations of the Inconsistencies in Survey Respondents Forecasts. European Economic Review, 54(4), 536–549.
Clements, M. P. (2011). An empirical investigation of the effects of rounding on the SPF probabilities of decline and output growth histograms. Journal of Money, Credit and Banking, 43(1), 207–220.
Clements, M. P. (2014a). Forecast Uncertainty - Ex Ante and Ex Post: US Inflation and Output Growth. Journal of Business & Economic Statistics, 32(2), 206–216.
Clements, M. P. (2014b). US inflation expectations and heterogeneous loss functions, 1968–2010. Journal of Forecasting, 33(1), 1–14.
Clements, M. P. (2017). Assessing macro uncertainty in real-time when data are subject to revision. Journal of Business & Economic Statistics, 35(3), 420–433.
Clements, M. P. (2018). Are macroeconomic density forecasts informative? International Journal of Forecasting, 34, 181–198.
Clements, Michael P. (2019). Macroeconomic survey expectations. Palgrave Texts in Econometrics. Palgrave Macmillan.
Clements, M. P., & Galvão, A. B. (2012). Improving real-time estimates of output gaps and inflation trends with multiple-vintage VAR models. Journal of Business & Economic Statistics, 30(4), 554–562.
Clements, M. P., & Galvão, A. B. (2013a). Forecasting with vector autoregressive models of data vintages: US output growth and inflation. International Journal of Forecasting, 29(4), 698–714.
Clements, M. P., & Galvão, A. B. (2013b). Real-time forecasting of inflation and output growth with autoregressive models in the presence of data revisions. Journal of Applied Econometrics, 28(3), 458–477.
Clements, Michael Peter, & Galvão, A. B. (2017). Data revisions and real-time probabilistic forecasting of macroeconomic variables (Discussion Paper No. ICM-2017-01). ICMA, Henley Business School, Reading.
Clements, Michael P., & Galvão, A. B. (2019). Data revisions and real-time forecasting. The Oxford Research Encyclopedia of Economics and Finance.
Clements, Michael P., & Harvey, D. I. (2011). Combining probability forecasts. International Journal of Forecasting, 27(2), 208–223.
Clements, Michael P., & Hendry, D. F. (1998). Forecasting economic time series. Cambridge University Press.
Clements, Michael P., & Hendry, D. F. (1999). Forecasting Non-stationary Economic Time Series. Cambridge, MA: MIT Press.
Clements, M. P., & Hendry, D. F. (2005). Evaluating a model by forecast performance. Oxford Bulletin of Economics and Statistics, 67, 931–956.
Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: A seasonal-trend decomposition procedure based on Loess. Journal of Official Statistics, 6(1), 3–73.
Clottey, T., Benton, W. C., Jr., & Srivastava, R. (2012). Forecasting product returns for remanufacturing operations. Decision Sciences, 43(4), 589–614. https://doi.org/10.1111/j.1540-5915.2012.00362.x
Cludius, J., Hermann, H., Matthes, F. C., & Graichen, V. (2014). The merit order effect of wind and photovoltaic electricity generation in Germany 2008–2016: Estimation and distributional implications. Energy Economics, 44, 302–313.
Coates, Dennis, & Humphreys, B. R. (1999). The growth effects of sport franchises, stadia, and arenas. Journal of Policy Analysis and Management, 18(4), 601–624.
Coates, D., & Humphreys, B. R. (2010). Week-to-week attendance and competitive balance in the National Football League. International Journal of Sport Finance, 5(4), 239.
Coccia, Gabriele. (2011). Analysis and developments of uncertainty processors for real time flood forecasting (PhD thesis). Alma Mater Studiorum University of Bologna.
Coccia, G., & Todini, E. (2011). Recent developments in predictive uncertainty assessment based on the model conditional processor approach. Hydrology and Earth System Sciences, 15(10), 3253–3274. https://doi.org/10.5194/hess-15-3253-2011
Coibion, O., & Gorodnichenko, Y. (2012). What can survey forecasts tell us about information rigidities? Journal of Political Economy, 120(1), 116–159.
Coibion, O., & Gorodnichenko, Y. (2015). Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts. American Economic Review, 105(8), 2644–78.
Collopy, F., & Armstrong, J. S. (1992). Rule-based forecasting: Development and validation of an expert systems approach to combining time series extrapolations. Management Science, 38(10), 1394–1414.
Commandeur, J. J. F., Koopman, S. J., & Ooms, M. (2011). Statistical software for state space methods. Journal of Statistical Software, 41(1), 1–18.
Congdon, P. (1990). Graduation of fertility schedules: An analysis of fertility patterns in London in the 1980s and an application to fertility forecasts. Regional Studies, 24(4), 311–326. https://doi.org/10.1080/00343409012331346014
Consolo, A., Favero, C., & Paccagnini, A. (2009). On the statistical identification of DSGE models. Journal of Econometrics, 150(1), 99–115.
Continuous Mortality Investigation. (2020). The CMI Mortality Projections Model, CMI_2019 (Working paper). London: Institute of Actuaries; Faculty of Actuaries.
Cook, S., & Thomas, C. (2003). An alternative approach to examining the ripple effect in U.K. House prices. Applied Economics Letters, 10(13), 849–851.
Cooke, R. M. (1991). Experts in uncertainty: Opinion and subjective probability in science. Oxford University Press.
Copeland, M. T. (1915). Statistical indices of business conditions. The Quarterly Journal of Economics, 29(3), 522–562.
Corani, G. (2005). Air quality prediction in milan: Feed-forward neural networks, pruned neural networks and lazy learning. Ecological Modeling, 185, 513–529.
Cordeiro, C., & Neves, M. (2006). The bootstrap methodology in time series forecasting. In J. Black & A. White (Eds.), Proceedings of CompStat2006 (pp. 1067–1073). Springer Verlag.
Cordeiro, C., & Neves, M. (2009). Forecasting time series with BOOT.EXPOS procedure. REVSTAT-Statistical Journal, 7(2), 135–149.
Cordeiro, C., & Neves, M. M. (2010). Boot.EXPOS in NNGC competition. In The 2010 international joint conference on neural networks (IJCNN) (pp. 1–7). IEEE.
Cordeiro, C., & Neves, M. M. (2013). Predicting and treating missing data with Boot.EXPOS. In Advances in regression, survival analysis, extreme values, markov processes and other statistical applications (pp. 131–138). Springer.
Cordeiro, C., & Neves, M. M. (2014). Forecast intervals with Boot.EXPOS. In New advances in statistical modeling and applications (pp. 249–256). Springer.
Corominas, A., Lusa, A., & Dolors Calvet, M. (2015). Computing voter transitions: The elections for the Catalan parliament, from 2010 to 2012. Journal of Industrial Engineering and Management, 8(1), 122–136. https://doi.org/10.3926/jiem.1189
Corradi, V., Swanson, N. R., & Olivetti, C. (2001). Predictive ability with cointegrated variables. Journal of Econometrics, 104(2), 315–358. https://doi.org/10.1016/S0304-4076(01)00086-0
Corsi, F. (2009). A Simple Approximate Long-Memory Model of Realized Volatility. Journal of Financial Econometrics, 7(2), 174–196.
Couharde, C., Delatte, A.-L., Grekou, C., Mignon, V., & Morvillier, F. (2018). EQCHANGE: A world database on actual and equilibrium effective exchange rates. International Economics, 156, 206–230.
Courgeau, D. (2012). Probability and social science: Methodologial relationships between the two approaches? (No. 43102). University Library of Munich, Germany.
Creal, D. D., & Tsay, R. S. (2015). High dimensional dynamic stochastic copula models. Journal of Econometrics, 189(2), 335–345.
Creal, D., Koopman, S. J., & Lucas, A. (2013). Generalized autoregressive score models with applications. Journal of Applied Econometrics, 28, 777–795.
Croll, J. (1875). Climate and time in their geological relations, a theory of secular changes of the earth’s climate. New York: D. Appleton.
Crone, S. F., Hibon, M., & Nikolopoulos, K. (2011). Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction. International Journal of Forecasting, 27(3), 635–660. https://doi.org/10.1016/j.ijforecast.2011.04.001
Cross, J. L. (2020). Macroeconomic forecasting with large bayesian VARs: Global-local priors and the illusion of sparsity. International Journal of Forecasting, 36(3), 899–916. Journal Article. https://doi.org/10.1016/j.ijforecast.2019.10.002
Cross, R., & Sproull, L. (2004). More than an answer: Information relationships for actionable knowledge. Organization Science, 15(4), 446–462.
Croston, J. D. (1972). Forecasting and stock control for intermittent demands. Operational Research Quarterly, 23(3), 289–303.
Croushore, D. (2006). Forecasting with real-time macroeconomic data. In G. Elliott, C. W. J. Granger, & A. Timmermann (Eds.), Handbook of economic forecasting, volume 1. Handbook of economics 24 (pp. 961–982). Elsevier, Horth-Holland.
Croushore, D. (2011a). Forecasting with real-time data vintages (chapter 9). In M. P. Clements & D. F. Hendry (Eds.), The oxford handbook of economic forecasting (pp. 247–267). Oxford University Press.
Croushore, D. (2011b). Frontiers of real-time data analysis. Journal of Economic Literature, 49, 72–100.
Croushore, D., & Stark, T. (2001). A real-time data set for macroeconomists. Journal of Econometrics, 105(1), 111–130.
Croxson, K., & Reade, J. J. (2014). Information and efficiency: Goal arrival in soccer. The Economic Journal, 124(575), 62–91.
Cunado, J., & De Gracia, F. P. (2005). Oil prices, economic activity and inflation: Evidence for some Asian countries. The Quarterly Review of Economics and Finance, 45(1), 65–83.
Cunningham, A., Eklund, J., Jeffery, C., Kapetanios, G., & Labhard, V. (2009). A state space approach to extracting the signal from uncertain data. Journal of Business & Economic Statistics, 30, 173–180.
Cunningham, C. R. (2006). House price uncertainty, timing of development, and vacant land prices: Evidence for real options in seattle. Journal of Urban Economics, 59(1), 1–31.
Curran, M., & Velic, A. (2019). Real exchange rate persistence and country characteristics: A global analysis. Journal of International Money and Finance, 97, 35–56.
Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 2(4), 303–314.
Czado, C., Gneiting, T., & Held, L. (2009). Predictive model assessment for count data. Biometrics, 65(4), 1254–1261.
Dagum, E. B. (1988). The X11ARIMA/88 seasonal adjustment method: Foundations and user’s manual. Statistics Canada, Time Series Research; Analysis Division.
Dai, Q., & Singleton, K. (2003). Term structure dynamics in theory and reality. The Review of Financial Studies, 16(3), 631–678.
Dai, Q., Singleton, K. J., & Yang, W. (2007). Regime shifts in a dynamic term structure model of U.S. Treasury bond yields. The Review of Financial Studies, 20(5), 1669–1706.
Dalkey, N. C. (1969). The Delphi method: An experimental study of group opinion. Research Memoranda, RM-5888-PR.
Dalla Valle, A., & Furlan, C. (2011). Forecasting accuracy of wind power technology diffusion models across countries. International Journal of Forecasting, 27(2), 592–601. https://doi.org/10.1016/j.ijforecast.2010.05.018
Daniel, K., & Moskowitz, T. J. (2016). Momentum crashes. Journal of Financial Economics, 122(2), 221–247. Journal Article. https://doi.org/10.1016/j.jfineco.2015.12.002
Dantas, T. M., & Cyrino Oliveira, F. L. (2018). Improving time series forecasting: An approach combining bootstrap aggregation, clusters and exponential smoothing. International Journal of Forecasting, 34(4), 748–761. https://doi.org/10.1016/j.ijforecast.2018.05.006
Dantas, T. M., Cyrino Oliveira, F. L., & Varela Repolho, H. M. (2017). Air transportation demand forecast through bagging holt winters methods. Journal of Air Transport Management, 59, 116–123. https://doi.org/10.1016/j.jairtraman.2016.12.006
Danti, P., & Magnani, S. (2017). Effects of the load forecasts mismatch on the optimized schedule of a real small-size smart prosumer. Energy Procedia, 126, 406–413. https://doi.org/10.1016/j.egypro.2017.08.283
Dantzig, G. B., & Infanger, G. (1993). Multi-stage stochastic linear programs for portfolio optimization. Annals of Operations Research, 45, 59–76.
Das, S., & Chen, M. (2007). Yahoo! For Amazon: Sentiment extraction from small talk on the web. Management Science, 53(9), 1375–1388.
Daskalaki, C., Kostakis, A., & Skiadopoulos, G. (2014). Are there common factors in individual commodity futures returns? Journal of Banking & Finance, 40(C), 346–363.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1003. https://doi.org/10.1287/mnsc.35.8.982
Dawid, A. P. (1982). The well-calibrated Bayesian. Journal of the American Statistical Association, 77(379), 605–610.
Dawid, A. Philip. (1984). Statistical theory: The prequential approach (with discussion and rejoinder). Journal of the Royal Statistical Society, Series A, 147, 278–292.
Dawid, A. P. (1985). Calibration-based empirical probability. The Annals of Statistics, 13(4), 1251–1274.
Dawid, A. P., DeGroot, M. H., Mortera, J., Cooke, R., French, S., Genest, C., … Winkler, R. L. (1995). Coherent combination of experts’ opinions. Test, 4(2), 263–313. https://doi.org/10.1007/BF02562628
De Baets, S. (2019). Surveying forecasting: A review and directions for future research. International Journal of Information and Decision Sciences.
De Baets, S., & Harvey, N. (2020). Using judgment to select and adjust forecasts from statistical models. European Journal of Operational Research, 284(3), 882–895. https://doi.org/10.1016/j.ejor.2020.01.028
De Beer, J. (1985). A time series model for cohort data. Journal of the American Statistical Association, 80(391), 525–530. https://doi.org/10.1080/01621459.1985.10478149
De Beer, J. (1990). Projecting age-specific fertility rates by using time-series methods. European Journal of Population, 5(4), 315–346. https://doi.org/10.1007/BF01796791
De Beer, Joop. (2008). Forecasting international migration: Time series projections vs argument-based forecasts. In International migration in europe (pp. 283–306). Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470985557.ch13
De Gooijer, J. (1998). On threshold moving-average models. Journal of Time Series Analysis, 19(1), 1–18. https://doi.org/10.1111/1467-9892.00074
De Gooijer, J. G., & Hyndman, R. J. (2006). 25 years of time series forecasting. International Journal of Forecasting, 22, 443–473.
De Iaco, S., & Maggio, S. (2016). A dynamic model for age-specific fertility rates in Italy. Spatial Statistics, 17, 105–120. https://doi.org/10.1016/j.spasta.2016.05.002
De Livera, A. M., Hyndman, R. J., & Snyder, R. D. (2011). Forecasting time series with complex seasonal patterns using exponential smoothing. Journal of the American Statistical Association, 106(496), 1513–1527.
De Mare, J. (1980). Optimal prediction of catastrophes with applications to Gaussian processes. Annals of Probability, 8(4), 841–850.
De Menezes, L. M., Bunn, D. W., & Taylor, J. W. (2000). Review of guidelines for the use of combined forecasts. European Journal of Operational Research, 120(1), 190–204.
Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications of the ACM, 51(1), 107–113.
Deb, C., Zhang, F., Yang, J., Lee, S. E., & Shah, K. W. (2017). A review on time series forecasting techniques for building energy consumption. Renewable and Sustainable Energy Reviews, 74, 902–924. https://doi.org/https://doi.org/10.1016/j.rser.2017.02.085
Debecker, A., & Modis, T. (1994). Determination of the uncertainties in S-curve logistic fits. Technological Forecasting and Social Change, 46(2), 153–173. https://doi.org/10.1016/0040-1625(94)90023-X
Debecker, A., & Modis, T. (2021). Poorly known aspects of flattening the curve of COVID 19. Technological Forecasting and Social Change, 163(120432).
Dees, S., Mauro, F. di, Pesaran, M. H., & Smith, L. V. (2007). Exploring the international linkages of the euro area: A global VAR analysis. Journal of Applied Economics, 22(1), 1–38. https://doi.org/10.1002/jae.932
Degiannakis, S. A., Filis, G., Klein, T., & Walther, T. (2020). Forecasting realized volatility of agricultural commodities. International Journal of Forecasting.
DeGroot, M. H. (2004). Optimal statistical decisions. Hoboken, N.J: Wiley-Interscience.
Dekker, M., van Donselaar, K., & Ouwehand, P. (2004). How to use aggregation and combined forecasting to improve seasonal demand forecasts. International Journal of Production Economics, 90(2), 151–167. https://doi.org/https://doi.org/10.1016/j.ijpe.2004.02.004
Del Negro, Marco, & Schorfheide, F. (2004). Priors from general equilibrium models for VARS. International Economic Review, 45(2), 643–673. https://doi.org/10.1111/j.1468-2354.2004.00139.x
Del Negro, Marco, & Schorfheide, F. (2006). How good is what you’ve got? DGSE-VAR as a toolkit for evaluating DSGE models. Economic Review-Federal Reserve Bank of Atlanta, 91(2), 21.
Del Negro, M., & Schorfheide, F. (2013). DSGE model-based forecasting. In G. Elliott & A. Timmermann (Eds.), Handbook of economic forecasting, volume 2. (pp. 57–140). Amsterdam, Horth-Holland.
Dellaportas, P., Denison, D. G. T., & Holmes, C. (2007). Flexible threshold models for modelling interest rate volatility. Econometric Reviews, 26(2-4), 419–437. https://doi.org/10.1080/07474930701220600
Delle Monache, L., Hacker, J. P., Zhou, Y., Deng, X., & Stull, R. B. (2006). Probabilistic aspects of meteorological and ozone regional ensemble forecasts. Journal of Geophysical Research: Atmospheres, 111(D24).
Demirovic, E., Stuckey, P. J., Bailey, J., Chan, J., Leckie, C., Ramamohanarao, K., & Guns, T. (2019). Predict+optimise with ranking objectives: Exhaustively learning linear functions. In IJCAI (pp. 1078–1085).
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 39, 1–38.
Dempster, M., Payne, T., Romahi, Y., & Thompson, G. W. P. (2001). Computational learning techniques for intraday FX trading using popular technical indicators. IEEE Transactions on Neural Networks, 12, 744–754. https://doi.org/10.1109/72.935088
Di Corso, E., Cerquitelli, T., & Apiletti, D. (2018). Metatech: Meteorological data analysis for thermal energy characterization by means of self-learning transparent models. Energies, 11(6), 1336.
Diab, D. L., Pui, S.-Y., Yankelevich, M., & Highhouse, S. (2011). Lay perceptions of selection decision aids in US and Non-US samples. International Journal of Selection and Assessment, 19(2), 209–216. https://doi.org/10.1111/j.1468-2389.2011.00548.x
Dichtl, H., Drobetz, W., Lohre, H., Rother, C., & Vosskamp, P. (2019). Optimal timing and tilting of equity factors. Financial Analysts Journal, 75(4), 84–102. Journal Article. https://doi.org/10.1080/0015198x.2019.1645478
Dickersin, K. (1990). The existence of publication bias and risk factors for its occurrence. Jama, 263(10), 1385–1389.
Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366), 427–431. https://doi.org/10.2307/2286348
Dickey, D. A., & Pantula, S. G. (1987). Determining the order of differencing in autoregressive processes. Journal of Business & Economic Statistics, 5(4), 455–461. https://doi.org/10.2307/1391997
Diebold, Francis X. (2015). Comparing predictive accuracy, twenty years later: A personal perspective on the use and abuse of diebold–mariano tests. Journal of Business & Economic Statistics, 33(1), 1–1. https://doi.org/10.1080/07350015.2014.983236
Diebold, Francis X., Gunther, T. A., & Tay, A. S. (1998). Evaluating density forecasts with applications to financial risk management. International Economic Review, 39(4), 863–883. https://doi.org/10.2307/2527342
Diebold, Francis X., & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business & Economic Statistics, 13(3), 253–263. https://doi.org/10.1080/07350015.1995.10524599
Diebold, Francis X., & Pauly, P. (1987). Structural change and the combination of forecasts. Journal of Forecasting, 6(1), 21–40.
Diebold, Francis X., & Pauly, P. (1990). The use of prior information in forecast combination. International Journal of Forecasting, 6(4), 503–508.
Diebold, Francis X., & Shin, M. (2019). Machine learning for regularized survey forecast combination: Partially-egalitarian lasso and its derivatives. International Journal of Forecasting, 35(4), 1679–1691.
Dieckmann, N. F., Gregory, R., Peters, E., & Hartman, R. (2017). Seeing what you want to see: How imprecise uncertainty ranges enhance motivated reasoning. Risk Analysis, 37(3), 471–486. https://doi.org/10.1111/risa.12639
Dietrich, J. K., & Joines, D. H. (1983). Rational Expectations, Informational Efficiency, and Tests Using Survey Data: A Comment. The Review of Economics and Statistics, 65(3), 525–529.
Dietvorst, B. J., Simmons, J. P., & Massey, C. (2015). Algorithm aversion: People erroneously avoid algorithms after seeing them err. Journal of Experimental Psychology: General, 144(1), 114–126. https://doi.org/10.1037/xge0000033
Dietvorst, B. J., Simmons, J. P., & Massey, C. (2018). Overcoming algorithm aversion: People will use imperfect algorithms if they can even slightly modify them. Management Science, 64(3), 1155–1170. https://doi.org/10.1287/mnsc.2016.2643
Dietzel, M., Baltzer, P. A., Vag, T., Gröschel, T., Gajda, M., Camara, O., & Kaiser, W. A. (2010). Application of breast MRI for prediction of lymph node metastases–systematic approach using 17 individual descriptors and a dedicated decision tree. Acta Radiologica, 51(8), 885–894.
Ding, R., Wang, Q., Dang, Y., Fu, Q., Zhang, H., & Zhang, D. (2015). Yading: Fast clustering of large-scale time series data. Proceedings of the VLDB Endowment, 8(5), 473–484.
Dion, P., Galbraith, N., & Sirag, E. (2020). Using expert elicitation to build Long-Term projection assumptions. In S. Mazzuco & N. Keilman (Eds.), Developments in demographic forecasting (pp. 43–62). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-42472-5\_3
Dissanayake, G. S., Peiris, M. S., & Proietti, T. (2018). Fractionally differenced Gegenbauer processes with long memory: A review. Statistical Science, 33, 413–426.
Divakar, S., Ratchford, B. T., & Shankar, V. (2005). CHAN4CAST: A multichannel, multiregion sales forecasting model and decision support system for consumer packaged goods. Marketing Science, 24(3), 334–350.
Dixon, M. J., & Coles, S. C. (1997). Modelling association football scores and inefficiencies in the football betting market. Applied Statistics, 47(3), 265—280.
Do, L., Vu, H., Vo, B., Liu, Z., & Phung, D. (2019). An effective spatial-temporal attention based neural network for traffic flow prediction. Transportation Research Part C: Emerging Technologies, 108, 12–28.
Doan, T., Litterman, R., & Sims, C. (1984). Forecasting and conditional projection using realistic prior distributions. Econometric Reviews, 3(1), 1–100. https://doi.org/10.1080/07474938408800053
Dokumentov, A. (2017). Smoothing, decomposition and forecasting of multidimensional and functional time series using regularisation. Monash University. https://doi.org/10.4225/03/58b79c4e83fcc
Dokumentov, A., & Hyndman, R. J. (2018). stR: STR Decomposition.
Dolara, A., Grimaccia, F., Leva, S., Mussetta, M., & Ogliari, E. (2015). A physical hybrid artificial neural network for short term forecasting of PV plant power output. Energies, 8(2), 1–16.
Dolara, A., Grimaccia, F., Leva, S., Mussetta, M., & Ogliari, E. (2018). Comparison of training approaches for photovoltaic forecasts by means of machine learning. Applied Sciences, 8(2), 228. https://doi.org/10.3390/app8020228
Dolgin, E. (2010). Better forecasting urged to avoid drug waste. Nature Publishing Group.
Dong, X., Li, Y., Rapach, D. E., & Zhou, G. (forthcoming). Anomalies and the expected market return. Journal of Finance. forthcoming.
Doornik, J. A. (2018). Autometrics. In J. L. Castle & N. Shephard (Eds.), The methodology and practice of econometrics (pp. 88–121). Oxford: Oxford University Press.
Doornik, J. A., Castle, J. L., & Hendry, D. F. (2020). Card forecasts for M4. International Journal of Forecasting, 36, 129–134.
Doornik, Jurgen A., Castle, J. L., & Hendry, D. F. (2020). Short-term forecasting of the coronavirus pandemic. International Journal of Forecasting. https://doi.org/10.1016/j.ijforecast.2020.09.003
Doornik, J. A., & Hendry, D. F. (2015). Statistical model selection with Big Data.” Cogent Economics & Finance, 3(1).
Doucet, A. N. de F., & Gordon, N. J. (2001). Sequential Monte Carlo methods in practice. New York: Springer Verlag.
Dowd, K., Cairns, A. J. G., Blake, D., Coughlan, G. D., Epstein, D., & Khalaf-Allah, M. (2010). Evaluating the goodness of fit of stochastic mortality model. Insurance Mathematics and Economics, 47(3), 255–265.
Draper, D., & Krnjajić, M. (2013). Calibration results for bayesian model specification. Department of Applied Mathematics; Statistics, University of California.
Dudek, G. (2013). Forecasting time series with multiple seasonal cycles using neural networks with local learning. In International conference on artificial intelligence and soft computing (pp. 52–63). Springer.
Dudek, G. (2015). Generalized regression neural network for forecasting time series with multiple seasonal cycles. In Intelligent systems’2014 (pp. 839–846). Springer.
Dudek, G. (2016). Multilayer perceptron for GEFCom2014 probabilistic electricity price forecasting. International Journal of Forecasting, 32(3), 1057–1060.
Duncan, O. D., & Davis, B. (1953). An alternative to ecological correlation. American Sociological Review, 18, 665–666. https://doi.org/10.2307/2088122
Dungey, M., Martin, V. L., Tang, C., & Tremayne, A. (2020). A threshold mixed count time series model: Estimation and application. Studies in Nonlinear Dynamics and Econometrics, 24(2).
Dunis, C. L., Laws, J., & Sermpinis, G. (2010). Modelling and trading the EUR/USD exchange rate at the ECB fixing. The European Journal of Finance, 16(6), 541–560. https://doi.org/10.1080/13518470903037771
Dunn, D. M., Williams, W. H., & Dechaine, T. L. (1976). Aggregate versus subaggregate models in local area forecasting. Journal of the American Statistical Association, 71(353), 68–71.
Durante, F., & Sempi, C. (2015). Principles of copula theory. CRC press.
Durbin, J., & Koopman, S. J. (2012). Time series analysis by state space methods. Oxford: Oxford University Press.
Easingwood, C. J., Mahajan, V., & Muller, E. (1983). A nonuniform influence innovation diffusion model of new product acceptance. Marketing Science, 2(3), 273–295.
Eastwood, J., Snook, B., & Luther, K. (2012). What people want from their professionals: Attitudes toward decision-making strategies. Journal of Behavioral Decision Making, 25(5), 458–468. https://doi.org/10.1002/bdm.741
Eaves, A. H. C., & Kingsman, B. G. (2004). Forecasting for the ordering and stock-holding of spare parts. Journal of the Operational Research Society, 55(4), 431–437. https://doi.org/10.1057/palgrave.jors.2601697
Eberhardt, M. (2012). Estimating panel Time-Series models with heterogeneous slopes. The Stata Journal, 12(1), 61–71. https://doi.org/10.1177/1536867X1201200105
Economou, T., Stephenson, D. B., Rougier, J. C., Neal, R. A., & Mylne, K. R. (2016). On the use of Bayesian decision theory for issuing natural hazard warnings. Proceedings of the Royal Society: Mathematical, Physical, and Engineering Sciences, 472(2194), 20160295. https://doi.org/10.1098/rspa.2016.0295
Edge, R. M., & Gürkaynak, R. (2010). How useful are estimated DSGE model forecasts for central bankers? Brookings Papers on Economic Activity, 41(2 (Fall)), 209–259.
Edwards, D. G., & Hsu, J. C. (1983). Multiple comparisons with the best treatment. Journal of the American Statistical Association, 78(384), 965–971. https://doi.org/10.1080/01621459.1983.10477047
Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7(1), 1–26.
Efron, Bradley, & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 54–75.
Eggleton, I. R. C. (1982). Intuitive Time-Series extrapolation. Journal of Accounting Research, 20(1), 68–102. https://doi.org/10.2307/2490763
Ehsani, S., & Linnainmaa, J. T. (2020). Factor momentum and the momentum factor. SSRN:3014521.
Eichenbaum, M., Johannsen, B. K., & Rebelo, S. (2017). Monetary policy and the predictability of nominal exchange rates (NBER Working Papers No. 23158). National Bureau of Economic Research, Inc.
Eksoz, C., Mansouri, S. A., Bourlakis, M., & Önkal, D. (2019). Judgmental adjustments through supply integration for strategic partnerships in food chains. Omega, 87, 20–33. https://doi.org/10.1016/j.omega.2018.11.007
El Balghiti, O., Elmachtoub, A. N., Grigas, P., & Tewari, A. (2019). Generalization bounds in the predict-then-optimize framework. In Advances in neural information processing systems (pp. 14412–14421).
Elangasinghe, M. A., Singhal, N., Dirks, K. N., Salmond, J. A., & Samarasinghe, S. (2014). Complex time series analysis of PM10 and PM2.5 for a coastal site using artificial neural network modelling and k-means clustering. Atmospheric Environment, 94, 106–116. https://doi.org/10.1016/j.atmosenv.2014.04.051
El-Hendawi, M., & Wang, Z. (2020). An ensemble method of full wavelet packet transform and neural network for short term electrical load forecasting. Electric Power Systems Research, 182, 106265. https://doi.org/10.1016/j.epsr.2020.106265
Elliott, G. (2015). Complete subset regressions with large-dimensional sets of predictors. Journal of Economic Dynamics & Control, 54, 86–111.
Elliott, G., Timmermann, A., & Komunjer, I. (2005). Estimation and testing of forecast rationality under flexible loss. The Review of Economic Studies, 72(4), 1107–1125.
Elliott, M. R., & Valliant, R. (2017). Inference for nonprobability samples. Statistical Science, 32(2), 249–264. https://doi.org/10.1214/16-STS598
Ellison, J., Dodd, E., & Forster, J. J. (2020). Forecasting of cohort fertility under a hierarchical Bayesian approach. Journal of the Royal Statistical Society. Series A, 183(3), 829–856. https://doi.org/10.1111/rssa.12566
Elmachtoub, A. N., & Grigas, P. (2017). Smart “predict, then optimize.” arXiv:1710.08005.
Elsbach, K. D., & Elofson, G. (2000). How the packaging of decision explanations affects perceptions of trustworthiness. Academy of Management Journal, 43(1), 80–89. https://doi.org/10.2307/1556387
Embrechts, P., Klüppelberg, C., & Mikosch, T. (2013). Modelling extremal events: For insurance and finance. Springer Science & Business Media.
Engel, C., Lee, D., Liu, C., Liu, C., & Wu, S. P. Y. (2019). The uncovered interest parity puzzle, exchange rate forecasting, and Taylor rules. Journal of International Money and Finance, 95, 317–331.
Engel, C., Mark, N. C., & West, K. D. (2008). Exchange rate models are not as bad as you think. In D. Acemoglu, K. Rogoff, & M. Woodford (Eds.), NBER macroeconomics annual 2007 (Vol. 22, pp. 381–441). National Bureau of Economic Research, Inc.
Engelberg, J., Manski, C. F., & Williams, J. (2009). Comparing the point predictions and subjective probability distributions of professional forecasters. Journal of Business & Economic Statistics, 27(1), 30–41.
Engle, R. (2002). Dynamic Conditional Correlation. Journal of Business & Economic Statistics, 20(3), 339–350. https://doi.org/10.1198/073500102288618487
Engle, R. (2004). Risk and volatility: Econometric models and financial practice. American Economic Review, 94(3), 405–420. https://doi.org/10.1257/0002828041464597
Engle, Robert F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4), 987. https://doi.org/10.2307/1912773
Engle, Robert F., Ghysels, E., & Sohn, B. (2013). Stock market volatility and macroeconomic fundamentals. Review of Economics and Statistics, 95(3), 776–797. https://doi.org/10.1162/REST_a_00300
Engle, Robert F., & Kroner, K. F. (1995). Multivariate Simultaneous Generalized ARCH. Econometric Theory, 11(1), 122–150. https://doi.org/10.1017/S0266466600009063
Engle, Robert F., & Russell, J. R. (1997). Forecasting the frequency of changes in quoted foreign exchange prices with the autoregressive conditional duration model. Journal of Empirical Finance, 4(2), 187–212. https://doi.org/10.1016/S0927-5398(97)00006-6
Engle, Robert F., & Russell, J. R. (1998). Autoregressive conditional duration: A new model for irregularly spaced transaction data. Econometrica, 66(5), 1127–1162. https://doi.org/10.2307/2999632
Erikson, R. S., & Wlezien, C. (2012). Markets vs. Polls as election predictors: An historical assessment. Electoral Studies, 31(3), 532–539. https://doi.org/10.1016/j.electstud.2012.04.008
European Banking Federation. (2019). EBF position paper on AI in the banking industry. EBF_037419.
Evans, M. D. R. (1986). American fertility patterns: A comparison of white and nonwhite cohorts born 1903-56. Population and Development Review, 12(2), 267–293. https://doi.org/10.2307/1973111
Fahimnia, B., Sanders, N., & Siemsen, E. (2020). Human judgment in supply chain forecasting. Omega, 94, 102249. https://doi.org/10.1016/j.omega.2020.102249
Fair, R. C. (1978). The effect of economic events on votes for president. The Review of Economics and Statistics, 60(2), 159–173. https://doi.org/10.2307/1924969
Fan, J., & Yao, Q. (2005). Nonlinear Time Series: Nonparametric and Parametric Methods (p. 576). New York: Springer.
Fan, S., Chen, L., & Lee, W.-J. (2008). Machine learning based switching model for electricity load forecasting. Energy Conversion & Management, 49(6), 1331–1344. https://doi.org/10.1016/j.enconman.2008.01.008
Fan, S., Mao, C., & Chen, L. (2006). Electricity peak load forecasting with self-organizing map and support vector regression. IEEJ Transactions on Electrical and Electronic Engineering, 1(3), xxxi–xxxi. https://doi.org/10.1002/tee.20075
Fan, Yuantao, Nowaczyk, S., & Röognvaldsson, T. (2020). Transfer learning for remaining useful life prediction based on consensus self-organizing models. Reliability Engineering and System Safety, In Press.
Fan, Yingying, & Tang, C. Y. (2013). Tuning parameter selection in high dimensional penalized likelihood. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 75(3), 531–552.
Faraji, J., Ketabi, A., Hashemi-Dezaki, H., Shafie-Khah, M., & Catalão, J. P. S. (2020). Optimal Day-Ahead Self-Scheduling and operation of prosumer microgrids using hybrid machine Learning-Based weather and load forecasting. IEEE Access, 8, 157284–157305. https://doi.org/10.1109/ACCESS.2020.3019562
Farmer, J. D., & Foley, D. (2009). The economy needs agent-based modelling. Nature, 460(7256), 685–686.
Faust, J., & Wright, J. H. (2013). Forecasting inflation. In G. Elliott & A. Timmermann (Eds.), Handbook of economic forecasting (Vol. 2, pp. 2–56). Elsevier.
Favero, C. A., & Marcellino, M. (2005). Modelling and forecasting fiscal variables for the euro area. Oxford Bulletin of Economics and Statistics, 67, 755–783.
Fernandes, M., de Sá Mota, B., & Rocha, G. (2005). A multivariate conditional autoregressive range model. Economics Letters, 86(3), 435–440. https://doi.org/10.1016/j.econlet.2004.09.005
Fernández-Villaverde, J., & Guerrón-Quintana, P. A. (2020). Estimating DSGE models: Recent advances and future challenges (Working Paper No. 27715). National Bureau of Economic Research. https://doi.org/10.3386/w27715
Fezzi, C., & Mosetti, L. (2020). Size matters: Estimation sample length and electricity price forecasting accuracy. The Energy Journal, 41(4).
Fifić, M., & Gigerenzer, G. (2014). Are two interviewers better than one? Journal of Business Research, 67(8), 1771–1779. https://doi.org/10.1016/j.jbusres.2014.03.003
Figlewski, S., & Wachtel, P. (1981). The Formation of Inflationary Expectations. The Review of Economics and Statistics, 63(1), 1–10.
Figlewski, S., & Wachtel, P. (1983). Rational Expectations, Informational Efficiency, and Tests Using Survey Data: A Reply. The Review of Economics and Statistics, 65(3), 529–531.
Fildes, R. (2017). Research into forecasting practice. Foresight: The International Journal of Applied Forecasting, 44, 39–46.
Fildes, R., & Goodwin, P. (2007). Against your better judgment? How organizations can improve their use of management judgment in forecasting. Interfaces, 37(6), 570–576.
Fildes, R., & Goodwin, P. (2013). Forecasting support systems: What we know, what we need to know. International Journal of Forecasting, 29(2), 290–294. https://doi.org/http://dx.doi.org/10.1016/j.ijforecast.2013.01.001
Fildes, R., Goodwin, P., & Lawrence, M. (2006). The design features of forecasting support systems and their effectiveness. Decision Support Systems, 42(1), 351–361. https://doi.org/10.1016/j.dss.2005.01.003
Fildes, R., Goodwin, P., Lawrence, M., & Nikolopoulos, K. (2009). Effective forecasting and judgmental adjustments: An empirical evaluation and strategies for improvement in supply-chain planning. International Journal of Forecasting, 25(1), 3–23. https://doi.org/10.1016/j.ijforecast.2008.11.010
Fildes, R., Goodwin, P., & Önkal, D. (2019). Use and misuse of information in supply chain forecasting of promotion effects. International Journal of Forecasting, 35(1), 144–156. https://doi.org/10.1016/j.ijforecast.2017.12.006
Fildes, R., Kolassa, S., & Ma, S. (2021). Post-script—retail forecasting: Research and practice. International Journal of Forecasting. https://doi.org/https://doi.org/10.1016/j.ijforecast.2021.09.012
Fildes, R., Ma, S., & Kolassa, S. (2019). Retail forecasting: Research and practice. International Journal of Forecasting. https://doi.org/10.1016/j.ijforecast.2019.06.004
Fildes, R., & Petropoulos, F. (2015). Improving forecast quality in practice. Foresight: The International Journal of Applied Forecasting, 36(Winter), 5–12.
Filippou, I., Rapach, D. E., Taylor, M. P., & Zhou, G. (2020). Exchange rate prediction with machine learning and a smart carry trade portfolio. SSRN:3455713.
Findley, D. F. (2005). Some recent developments and directions in seasonal adjustment. Journal of Official Statistics, 21(2), 343.
Findley, D. F., Monsell, B. C., Bell, W. R., Otto, M. C., & Chen, B.-C. (1998). New capabilities and methods of the X-12-ARIMA seasonal-adjustment program. Journal of Business & Economic Statistics, 16(2), 127–152.
Fiori, C., & Kovaka, M. (2005). Defining megaprojects: Learning from construction at the edge of experience. Construction Research Congress 2005, 1–10. https://doi.org/10.1061/40754(183)70
Fiori, F., Graham, E., & Feng, Z. (2014). Geographical variations in fertility and transition to second and third birth in Britain. Advances in Life Course Research, 21, 149–167. https://doi.org/10.1016/j.alcr.2013.11.004
Fiorucci, J. A., Pellegrini, T. R., Louzada, F., Petropoulos, F., & Koehler, A. B. (2016). Models for optimising the theta method and their relationship to state space models. International Journal of Forecasting, 32(4), 1151–1161. https://doi.org/10.1016/j.ijforecast.2016.02.005
Fioruci, J. A., Pellegrini, T. R., Louzada, F., & Petropoulos, F. (2015). The optimised theta method. arXiv:1503.03529.
Firebaugh, G. (1978). A rule for inferring Individual-Level relationships from aggregate data. American Sociological Review, 43(4), 557–572. https://doi.org/10.2307/2094779
Fischhoff, B. (2007). An early history of hindsight research. Social Cognition, 25(1), 10–13. https://doi.org/10.1521/soco.2007.25.1.10
Fischhoff, B. (2012). Communicating uncertainty fulfilling the duty to inform. Issues in Science and Technology, 28(4), 63–70. https://doi.org/10.17226/892
Fischhoff, B., & Davis, A. L. (2014). Communicating scientific uncertainty. Proceedings of the National Academy of Sciences, 111(Supplement 4), 13664–13671. https://doi.org/10.1073/pnas.1317504111
Fisher, J. C., & Pry, R. H. (1971). A simple substitution model of technological change. Technological Forecasting and Social Change, 3, 75–88. https://doi.org/10.1016/S0040-1625(71)80005-7
Fiske, S. T., & Dupree, C. (2014). Gaining trust as well as respect in communicating to motivated audiences about science topics. Proceedings of the National Academy of Sciences, 111(Supplement 4), 13593–13597. https://doi.org/10.1073/pnas.1317505111
Fissler, T., Frongillo, R., Hlavinová, J., & Rudloff, B. (2021). Forecast evaluation of quantiles, prediction intervals, and other set-valued functionals. Electronic Journal of Statistics, 15(1). https://doi.org/10.1214/21-ejs1808
Fiszeder, Piotr. (2005). Forecasting the volatility of the Polish stock index – WIG20. In W. Milo & P. Wdowiński (Eds.), Forecasting financial markets. Theory and applications (pp. 29–42). Wydawnictwo Uniwersytetu Łódzkiego.
Fiszeder, P. (2018). Low and high prices can improve covariance forecasts: The evidence based on currency rates. Journal of Forecasting, 37(6), 641–649. https://doi.org/10.1002/for.2525
Fiszeder, Piotr, & Fałdziński, M. (2019). Improving forecasts with the co-range dynamic conditional correlation model. Journal of Economic Dynamics and Control, 108, 103736. https://doi.org/10.1016/j.jedc.2019.103736
Fiszeder, P., Fałdziński, M., & Molnár, P. (2019). Range-based DCC models for covariance and value-at-risk forecasting. Journal of Empirical Finance, 54, 58–76. https://doi.org/10.1016/j.jempfin.2019.08.004
Fiszeder, P., & Perczak, G. (2013). A new look at variance estimation based on low, high and closing prices taking into account the drift. Statistica Neerlandica, 67(4), 456–481. https://doi.org/10.1111/stan.12017
Fiszeder, Piotr, & Perczak, G. (2016). Low and high prices can improve volatility forecasts during periods of turmoil. International Journal of Forecasting, 32(2), 398–410. https://doi.org/10.1016/j.ijforecast.2015.07.003
Fixler, D. J., & Grimm, B. T. (2005). Reliability of the NIPA estimates of U.S. Economic activity. Survey of Current Business, 85, 9–19.
Fixler, D. J., & Grimm, B. T. (2008). The reliability of the GDP and GDI estimates. Survey of Current Business, 88, 16–32.
Fliedner, G. (2003). CPFR: An emerging supply chain tool. Industrial Management & Data Systems, 103(1), 14–21. https://doi.org/10.1108/02635570310456850
Flyvbjerg, B. (2007). Policy and planning for Large-Infrastructure projects: Problems, causes, cures. Environment and Planning: B, Planning & Design, 34(4), 578–597. https://doi.org/10.1068/b32111
Flyvbjerg, B., Bruzelius, N., & Rothengatter, W. (2003). Megaprojects and risk: An anatomy of ambition. Cambridge University Press.
Forcina, A., & Pellegrino, D. (2019). Estimation of voter transitions and the ecological fallacy. Quality & Quantity, 53(4), 1859–1874. https://doi.org/10.1007/s11135-019-00845-1
Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2003). Do financial variables help forecasting inflation and real activity in the euro area? Journal of Monetary Economics, 50(6), 1243–1255.
Forrest, D. K., Goddard, J., & Simmons, R. (2005). Odds-Setters As Forecasters: The Case of English Football. International Journal of Forecasting, 21, 551–564.
Forrest, D., & Simmons, R. (2006). New Issues in Attendance Demand: The case of the English Football League. Journal of Sports Economics, 7(3), 247–263.
Fortsch, S. M., & Khapalova, E. A. (2016). Reducing uncertainty in demand for blood. Operations Research for Health Care, 9, 16–28.
Fortuin, L. (1984). Initial supply and re-order level of new service parts. European Journal of Operational Research, 15(3), 310–319. https://doi.org/10.1016/0377-2217(84)90098-5
Foucquier, A., Robert, S., Suard, F., Stéphan, L., & Jay, A. (2013). State of the art in building modelling and energy performances prediction: A review. Renewable and Sustainable Energy Reviews, 23, 272–288. https://doi.org/https://doi.org/10.1016/j.rser.2013.03.004
Fox, A. J. (1972). Outliers in time series. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 34(3), 350–363. https://doi.org/10.1111/j.2517-6161.1972.tb00912.x
Frankel, J., & Schreger, J. (2013). Over-optimistic official forecasts and fiscal rules in the eurozone. Review of World Economics, 149, 247–272.
Franses, P. H. (1991). Seasonality, non-stationarity and the forecasting of monthly time series. International Journal of Forecasting, 7(2), 199–208. https://doi.org/10.1016/0169-2070(91)90054-Y
Franses, P. H., Dijk, D. van, & Opschoor, A. (2014). Time series models for business and economic forecasting. Cambridge University Press.
Franses, P. H., & Ghijsels, H. (1999). Additive outliers, GARCH and forecasting volatility. International Journal of Forecasting, 15(1), 1–9. https://doi.org/10.1016/S0169-2070(98)00053-3
Franses, P. H., & Legerstee, R. (2009a). A unifying view on multi-step forecasting using an autoregression. Journal of Economic Surveys, 24(3), 389–401.
Franses, P. H., & Legerstee, R. (2009b). Do experts’ adjustments on model-based SKU-level forecasts improve forecast quality? Journal of Forecasting, 36. https://doi.org/10.1002/for.1129
Franses, P. H., & Legerstee, R. (2009c). Properties of expert adjustments on model-based SKU-level forecasts. International Journal of Forecasting, 25(1), 35–47. https://doi.org/10.1016/j.ijforecast.2008.11.009
Frazier, D. T., Loaiza-Maya, R., Martin, G. M., & Koo, B. (2021). Loss-based variational Bayes prediction. arXiv:2104.14054.
Frazier, D. T., Maneesoonthorn, W., Martin, G. M., & McCabe, B. P. (2019). Approximate Bayesian forecasting. International Journal of Forecasting, 35(2), 521–539.
Frechtling, D. C. (2001). Forecasting tourism demand: Methods and strategies. Routledge.
Freedman, David A. (1981). Bootstrapping regression models. The Annals of Statistics, 9(6), 1218–1228.
Freedman, D. A., Klein, S. P., Ostland, M., & Roberts, M. (1998). Review of A Solution to the Ecological Inference Problem.” Journal of the American Statistical Association, 93(444), 1518–1522.
Freeland, K., & McCabe, B. P. M. (2004). Forecasting discrete valued low count time series. International Journal of Forecasting, 20(3), 427–434.
Freyberger, J., Neuhierl, A., & Weber, M. (2020). Dissecting characteristics nonparametrically. Review of Financial Studies, 33, 2326–2377.
Friedman, J. A. (2015). Using power laws to estimate conflict size. The Journal of Conflict Resolution, 59(7), 1216–1241. https://doi.org/10.1177/0022002714530430
Fry, C., & Brundage, M. (2020). The M4 forecasting competition – A practitioner’s view. International Journal of Forecasting, 36(1), 156–160. https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.02.013
Fuhrer, J. C. (2018). Intrinsic Expectations Persistence: Evidence from Professional and Household Survey Expectations (Working Papers No. 18-9). Federal Reserve Bank of Boston.
Fulcher, B. D., & Jones, N. S. (2014). Highly comparative feature-based time-series classification. IEEE Transactions on Knowledge and Data Engineering, 26(12), 3026–3037.
Fulcher, B. D., Little, M. A., & Jones, N. S. (2013). Highly comparative time-series analysis: The empirical structure of time series and their methods. Journal of the Royal Society Interface, 10(83), 20130048. https://doi.org/10.1098/rsif.2013.00481
Funahashi, K.-I. (1989). On the approximate realization of continuous mappings by neural networks. Neural Networks, 2(3), 183–192.
Furlan, C., & Mortarino, C. (2018). Forecasting the impact of renewable energies in competition with non-renewable sources. Renewable and Sustainable Energy Reviews, 81, 1879–1886.
Furlan, C., Mortarino, C., & Zahangir, M. S. (2020). Interaction among three substitute products: An extended innovation diffusion model. Statistical Methods and Applications, in press.
Gaddis, J. L. (1989). The long peace: Inquiries into the history of the cold war. The Long Peace: Inquiries Into the History of the Cold War.
Gaillard, P., Goude, Y., & Nedellec, R. (2016). Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting. International Journal of Forecasting, 32(3), 1038–1050.
Galbreth, M. R., Kurtuluş, M., & Shor, M. (2015). How collaborative forecasting can reduce forecast accuracy. Operations Research Letters, 43(4), 349–353. https://doi.org/10.1016/j.orl.2015.04.006
Gali, J. (2008). Monetary policy, inflation, and the business cycle: An introduction to the new keynesian framework. Princeton; Oxford: Princeton University Press.
Galicia, A., Talavera-Llames, R., Troncoso, A., Koprinska, I., & Martı́nez-Álvarez, F. (2019). Multi-step forecasting for big data time series based on ensemble learning. Knowledge-Based Systems, 163, 830–841.
Galicia, A., Torres, J. F., Martı́nez-Álvarez, F., & Troncoso, A. (2018). A novel Spark-based multi-step forecasting algorithm for big data time series. Information Sciences, 467, 800–818.
Galvão, A. B. (2017). Data revisions and DSGE models. Journal of Econometrics, 196(1), 215–232.
Galvão, A. B., Giraitis, L., Kapetanios, G., & Petrova, K. (2016). A time varying DSGE model with financial frictions. Journal of Empirical Finance, 38, 690–716.
Gamble, C., & Gao, J. (2018). Safety-first AI for autonomous data centre cooling and industrial control. https://deepmind.com/blog/article/safety-first-ai-autonomous-data-centre-cooling-and-industrial-control.
Gans, N., Koole, G., & Mandelbaum, A. (2003). Telephone call centers: Tutorial, review, and research prospects. Manufacturing & Service Operations Management, 5(2), 79–141.
Garcia, R., & Perron, P. (1996). An analysis of the real interest rate under regime shifts. The Review of Economics and Statistics, 78(1), 111–125.
Garcı́a, F. P., Pedregal, D. J., & Roberts, C. (2010). Time series methods applied to failure prediction and detection. Reliability Engineering & System Safety, 95(6), 698–703. https://doi.org/10.1016/j.ress.2009.10.009
Gardner, E., Jr, & Koehler, A. B. (2005). Comments on a patented bootstrapping method for forecasting intermittent demand. International Journal of Forecasting, 21(3), 617–618.
Gardner, E. S. (1985). Exponential smoothing: The state of the art. Journal of Forecasting, 4(1), 1–28. https://doi.org/10.1002/for.3980040103
Gardner, E. S. (2006). Exponential smoothing: The state of the art - part II. International Journal of Forecasting, 22(4), 637–666. https://doi.org/10.1016/j.ijforecast.2006.03.005
Garman, M. B., & Klass, M. J. (1980). On the estimation of security price volatilities from historical data. The Journal of Business, 53(1), 67–78. https://doi.org/10.1086/296072
Garratt, A., Lee, K., Mise, E., & Shields, K. (2008). Real time representations of the output gap. Review of Economics and Statistics, 90, 792–804.
Gartner, W. B., & Thomas, R. J. (1993). Factors affecting new product forecasting accuracy in new firms. Journal of Product Innovation Management, 10(1), 35–52. https://doi.org/10.1016/0737-6782(93)90052-R
Gasthaus, J., Benidis, K., Wang, Y., Rangapuram, S. S., Salinas, D., Flunkert, V., & Januschowski, T. (2019). Probabilistic forecasting with spline quantile function RNNs. In The 22nd international conference on artificial intelligence and statistics (pp. 1901–1910).
Gebicki, M., Mooney, E., Chen, S.-J. G., & Mazur, L. M. (2014). Evaluation of hospital medication inventory policies. Health Care Management Science, 17(3), 215–229.
Gelman, A., Park, D. K., Ansolabehere, S., Price, P. N., & Minnite, L. C. (2001). Models, assumptions and model checking in ecological regressions. Journal of the Royal Statistical Society, Series A, 164(1), 101–118. https://doi.org/10.1111/1467-985X.00190
Gelper, S., Fried, R., & Croux, C. (2009). Robust forecasting with exponential and Holt-Winters smoothing. Journal of Forecasting, 11. https://doi.org/10.1002/for.1125
Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G., & Yacalis, G. (2018). Could machine learning break the convection parameterization deadlock? Geophysical Research Letters, 45(11), 5742–5751.
George, E. I., & McCulloch, R. E. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association, 88(423), 881–890.
Gerlach, R., Chen, C. W. S., Lin, D. S. Y., & Huang, M.-H. (2006). Asymmetric responses of international stock markets to trading volume. Physica A: Statistical Mechanics and Its Applications, 360(2), 422–444. https://doi.org/10.1016/j.physa.2005.06.045
Gerland, P., Raftery, A. E., Ševčı́ková, H., Li, N., Gu, D., Spoorenberg, T., … Wilmoth, J. (2014). World population stabilization unlikely this century. Science, 346(6206), 234–237. https://doi.org/10.1126/science.1257469
Geweke, J. (1977). The dynamic factor analysis of economic time series. Latent Variables in Socio-Economic Models.
Geweke, J. (2001). Bayesian econometrics and forecasting. Journal of Econometrics, 100(1), 11–15.
Geweke, J., & Amisano, G. (2010). Comparing and evaluating Bayesian predictive distributions of asset returns. International Journal of Forecasting, 26(2), 216–230.
Geweke, J., & Amisano, G. (2011). Optimal prediction pools. Journal of Econometrics, 164(1), 130–141. https://doi.org/https://doi.org/10.1016/j.jeconom.2011.02.017
Geweke, J., Koop, G., & Dijk, H. van. (2011). The oxford handbook of Bayesian econometrics. OUP.
Geweke, J., & Whiteman, C. (2006). Bayesian forecasting. The Handbook of Economic Forecasting, 1, 3–98.
Gharbi, M., Quenel, P., Gustave, J., Cassadou, S., La Ruche, G., Girdary, L., & Marrama, L. (2011). Time series analysis of dengue incidence in guadeloupe, french west indies: Forecasting models using climate variables as predictors. BMC Infectious Diseases, 11(1), 1–13.
Ghassemi, M., Pimentel, M. A., Naumann, T., Brennan, T., Clifton, D. A., Szolovits, P., & Feng, M. (2015). A multivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data. In Proceedings of the AAAI conference on artificial intelligence. AAAI conference on artificial intelligence (Vol. 2015, p. 446). NIH Public Access.
Ghysels, E., Lee, H. S., & Noh, J. (1994). Testing for unit roots in seasonal time series: Some theoretical extensions and a Monte Carlo investigation. Journal of Econometrics, 62(2), 415–442. https://doi.org/10.1016/0304-4076(94)90030-2
Ghysels, E., Plazzi, A., Valkanov, R., & Torous, W. (2013). Forecasting real estate prices. In G. Elliott & A. Timmermann (Eds.), Handbook of economic forecasting (Vol. 2, pp. 509–580). Elsevier.
Giacomini, R., & Rossi, B. (2016). MODEL COMPARISONS IN UNSTABLE ENVIRONMENTS. International Economic Review, 57(2), 369–392. https://doi.org/10.1111/iere.12161
Giacomini, R., & White, H. (2006). Tests of conditional predictive ability. Econometrica, 74(6), 1545–1578. https://doi.org/10.1111/j.1468-0262.2006.00718.x
Giani, A., Bitar, E., Garcia, M., McQueen, M., Khargonekar, P., & Poolla, K. (2013). Smart grid data integrity attacks. IEEE Transactions on Smart Grid, 4(3), 1244–1253.
Giannone, D. L., & Primiceri, G. M. (2017). Macroeconomic prediction with big data: The illusion of sparsity. The Fedral Reserve Bank of New York.
Gias, A. U., & Casale, G. (2020). COCOA: Cold start aware capacity planning for function-as-a-service platforms. arXiv:2007.01222.
Giebel, G., & Kariniotakis, G. (2017). Wind power forecastinga review of the state of the art. In Renewable energy forecasting (pp. 59–109). Elsevier. https://doi.org/10.1016/b978-0-08-100504-0.00003-2
Gigerenzer, G. (1996). On narrow norms and vague heuristics: A reply to Kahneman and Tversky. Psychological Review, 103(3), 592–596. https://doi.org/10.1037/0033-295X.103.3.592
Gigerenzer, G. (2007). Gut feelings: The intelligence of the unconscious. Viking.
Gil, R. G. R., & Levitt, S. D. (2007). Testing the efficiency of markets in the 2002 World Cup. The Journal of Prediction Markets, 1(3), 255–270. https://doi.org/10.5750/jpm.v1i3.504
Gil-Alana, L. (2001). A fractionally integrated exponential model for UK unemployment. Journal of Forecasting, 20(5), 329–340.
Gilbert, C., Browell, J., & McMillan, D. (2020a). Leveraging turbine-level data for improved probabilistic wind power forecasting. IEEE Transactions on Sustainable Energy, 11(3), 1152–1160. https://doi.org/10.1109/tste.2019.2920085
Gilbert, C., Browell, J., & McMillan, D. (2020b). Probabilistic access forecasting for improved offshore operations. International Journal of Forecasting. https://doi.org/10.1016/j.ijforecast.2020.03.007
Gilbert, K. (2005). An ARIMA supply chain model. Management Science, 51(2), 305–310. https://doi.org/10.1287/mnsc.1040.0308
Gilliland, M. (2002). Is forecasting a waste of time? Supply Chain Management Review, 6(4), 16–23.
Gilliland, Michael. (2010). The business forecasting deal: Exposing myths, eliminating bad practices, providing practical solutions. John Wiley & Sons.
Giraitis, L., Kapetanios, G., & Price, S. (2013). Adaptive Forecasting in the Presence of Recent and Ongoing Structural Change. Journal of Econometrics, 177(2), 153–170.
Givon, M., Mahajan, W., & Müller, E. (1995). Software piracy: Estimation of the lost sales and the impact on software diffusion. Journal of Marketing, 59, 29–37.
Glahn, H. R., & Lowry, D. A. (1972). The use of model output statistics (MOS) in objective weather forecasting. Journal of Applied Meteorology, 11(8), 1203–1211.
Gleditsch, R. F., & Syse, A. (2020). Ways to project fertility in Europe. Perceptions of current practices and outcomes (No. 929). Statistics Norway, Research Department.
Glocker, C., & Wegmüller, P. (2018). International evidence of time-variation in trend labor productivity growth. Economics Letters, 167, 115–119.
Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance, 48(5), 1779–1801. https://doi.org/10.1111/j.1540-6261.1993.tb05128.x
Glynn, A., & Wakefield, J. (2010). Ecological inference in the social sciences. Statistical Methodology, 7(3), 307–322. https://doi.org/10.1016/j.stamet.2009.09.003
Gneiting, T. (2011a). Making and evaluating point forecasts. Journal of the American Statistical Association, 106(494), 746–762. https://doi.org/10.1198/jasa.2011.r10138
Gneiting, T. (2011b). Quantiles as optimal point forecasts. International Journal of Forecasting, 27(2), 197–207. https://doi.org/10.1016/j.ijforecast.2009.12.015
Gneiting, T., Balabdaoui, F., & Raftery, A. E. (2007). Probabilistic forecasts, calibration and sharpness. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 69, 243–268.
Gneiting, T., & Katzfuss, M. (2014). Probabilistic forecasting. Annual Review of Statistics and Its Application, 1, 125–151. https://doi.org/10.1146/annurev-statistics-062713-085831
Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102(477), 359–378. https://doi.org/10.1198/016214506000001437
Gneiting, T., Raftery, A. E., Westveld, A. H., & Goldman, T. (2005). Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Monthly Weather Review, 133(5), 1098–1118. https://doi.org/10.1175/MWR2904.1
Gneiting, T., & Ranjan, R. (2013). Combining predictive distributions. Electronic Journal of Statistics, 7, 1747–1782.
Gneiting, T., Stanberry, L. I., Grimit, E. P., Held, L., & Johnson, N. A. (2008). Assessing probabilistic forecasts of multivariate quantities, with applications to ensemble predictions of surface winds (with discussion and rejoinder). Test, 17, 211–264.
Godahewa, R., Deng, C., Prouzeau, A., & Bergmeir, C. (2020). Simulation and optimisation of air conditioning systems using machine learning. arXiv:2006.15296.
Godbole, N., Srinivasaiah, M., & Skiena, S. (2007). Large-scale sentiment analysis for news and blogs. ICWSM, 7(21), 219–222.
Godet, M. (1982). From forecasting to “la prospective” a new way of looking at futures. Journal of Forecasting, 1(3), 293–301. https://doi.org/10.1002/for.3980010308
Goh, T. N., & Varaprasad, N. (1986). A statistical methodology for the analysis of the Life-Cycle of reusable containers. IIE Transactions, 18(1), 42–47. https://doi.org/10.1080/07408178608975328
Gohin, A., & Chantret, F. (2010). The long-run impact of energy prices on world agricultural markets: The role of macro-economic linkages. Energy Policy, 38(1), 333–339. https://doi.org/10.1016/j.enpol.2009.09.023
Goia, A., May, C., & Fusai, G. (2010). Functional clustering and linear regression for peak load forecasting. International Journal of Forecasting, 26(4), 700–711. https://doi.org/10.1016/j.ijforecast.2009.05.015
Goldberg, Y. (2017). Neural network methods for natural language processing. Synthesis Lectures on Human Language Technologies, 10(1), 1–309.
Goldstein, D. G., & Gigerenzer, G. (2002). Models of ecological rationality: The recognition heuristic. Psychological Review, 109(1), 75–90. https://doi.org/10.1037/0033-295x.109.1.75
Goldstein, J. S. (2011). Winning the war on war: The decline of armed conflict worldwide. Penguin.
Golestaneh, F., Pinson, P., & Gooi, H. B. (2019). Polyhedral predictive regions for power system applications. IEEE Transactions on Power Systems, 34(1), 693–704.
Goltsos, T. E., Syntetos, A. A., & Laan, E. van der. (2019). Forecasting for remanufacturing: The effects of serialization. Journal of Operations Management, 65(5), 447–467. https://doi.org/10.1002/joom.1031
Goltsos, T., & Syntetos, A. (2020). Forecasting for remanufacturing. Foresight: The International Journal of Applied Forecasting, 56, 10–17.
Gomez Munoz, C. Q., De la Hermosa Gonzalez-Carrato, R. R., Trapero Arenas, J. R., & Garcia Marquez, F. P. (2014). A novel approach to fault detection and diagnosis on wind turbines. GlobalNEST International Journal, 16(6), 1029–1037.
Gonçalves, C., Bessa, R. J., & Pinson, P. (2021). A critical overview of privacy-preserving approaches for collaborative forecasting. International Journal of Forecasting, 37(1), 322–342.
Gonçalves, C., Pinson, P., & Bessa, R. J. (2021). Towards data markets in renewable energy forecasting. IEEE Transactions on Sustainable Energy, 12(1), 533–542.
Gonçalves, R. (2015). Minimizing symmetric mean absolute percentage error (SMAPE). Cross Validated.
Gönül, M. S., Önkal, D., & Goodwin, P. (2009). Expectations, use and judgmental adjustment of external financial and economic forecasts: An empirical investigation. Journal of Forecasting, 28(1), 19–37. https://doi.org/10.1002/for.1082
Gönül, M. S., Önkal, D., & Goodwin, P. (2012). Why should I trust your forecasts? Foresight: The International Journal of Applied Forecasting, 27, 5–9.
Gönül, M. S., Önkal, D., & Lawrence, M. (2006). The effects of structural characteristics of explanations on use of a DSS. Decision Support Systems, 42(3), 1481–1493. https://doi.org/10.1016/j.dss.2005.12.003
Goodman, L. A. (1953). Ecological regressions and behavior of individuals. American Sociological Review, 18, 663–664. https://doi.org/10.2307/2088121
Goodman, L. A. (1959). Some alternatives to ecological correlation. The American Journal of Sociology, 64(6), 610–625.
Goodwin, P. (2000a). Correct or combine? Mechanically integrating judgmental forecasts with statistical methods. International Journal of Forecasting, 16(2), 261–275. https://doi.org/10.1016/S0169-2070(00)00038-8
Goodwin, P. (2000b). Improving the voluntary integration of statistical forecasts and judgment. International Journal of Forecasting, 16(1), 85–99. https://doi.org/10.1016/S0169-2070(99)00026-6
Goodwin, P. (2002). Integrating management judgment and statistical methods to improve short-term forecasts. Omega, 30(2), 127–135. https://doi.org/10.1016/S0305-0483(01)00062-7
Goodwin, P. (2014). Getting real about uncertainty. Foresight: The International Journal of Applied Forecasting, 33, 4–7.
Goodwin, P., Dyussekeneva, K., & Meeran, S. (2013). The use of analogies in forecasting the annual sales of new electronics products. IMA Journal of Management Mathematics, 24(4), 407–422. https://doi.org/10.1093/imaman/dpr025
Goodwin, P., & Fildes, R. (1999). Judgmental forecasts of time series affected by special events: Does providing a statistical forecast improve accuracy? Journal of Behavioural Decision Making, 12(1), 37–53.
Goodwin, P., Fildes, R., Lawrence, M., & Nikolopoulos, K. (2007). The process of using a forecasting support system. International Journal of Forecasting, 23(3), 391–404. https://doi.org/http://dx.doi.org/10.1016/j.ijforecast.2007.05.016
Goodwin, P., Fildes, R., Lawrence, M., & Stephens, G. (2011). Restrictiveness and guidance in support systems. Omega, 39(3), 242–253. https://doi.org/10.1016/j.omega.2010.07.001
Goodwin, P., Gönül, M. S., & Önkal, D. (2013). Antecedents and effects of trust in forecasting advice. International Journal of Forecasting, 29(2), 354–366. https://doi.org/10.1016/j.ijforecast.2012.08.001
Goodwin, P., Gönül, M. S., & Önkal, D. (2019). When providing optimistic and pessimistic scenarios can be detrimental to judgmental demand forecasts and production decisions. European Journal of Operational Research, 273(3), 992–1004. https://doi.org/10.1016/j.ejor.2018.09.033
Goodwin, P., Gönül, M. S., Önkal, D., Kocabıyıkoğlu, A., & Göğüş, I. (2019). Contrast effects in judgmental forecasting when assessing the implications of worst- and best-case scenarios. Journal of Behavioral Decision Making, 32(5), 536–549. https://doi.org/10.1002/bdm.2130
Goodwin, P., Petropoulos, F., & Hyndman, R. J. (2017). A note on upper bounds for forecast-value-added relative to naı̈ve forecasts. Journal of the Operational Research Society, 68(9), 1082–1084. https://doi.org/10.1057/s41274-017-0218-3
Goodwin, P., & Wright, G. (2010). The limits of forecasting methods in anticipating rare events. Technological Forecasting and Social Change, 77(3), 355–368. https://doi.org/10.1016/j.techfore.2009.10.008
Google code. (2013). The Word2Vec project. https://code.google.com/archive/p/word2vec/.
Gorbey, S., James, D., & Poot, J. (1999). Population forecasting with endogenous migration: An application to Trans-Tasman migration. International Regional Science Review, 22(1), 69–101. https://doi.org/10.1177/016001799761012208
Gordon, R. J. (2003). Exploding productivity growth: Context, causes, and implications. Brookings Papers on Economic Activity, 2003(2), 207–298.
Gospodinov, N. (2005). Testing for threshold nonlinearity in Short-Term interest rates. Journal of Financial Econometrics, 3(3), 344–371. https://doi.org/10.1093/jjfinec/nbi016
Gould, P. G., Koehler, A. B., Ord, J. K., Snyder, R. D., Hyndman, R. J., & Vahid-Araghi, F. (2008). Forecasting time series with multiple seasonal patterns. European Journal of Operational Research, 191(1), 207–222.
Goyal, A., & Welch, I. (2008). A comprehensive look at the empirical performance of equity premium prediction. Review of Financial Studies, 21(4), 1455–1508.
Graefe, A. (2014). Accuracy of vote expectation surveys in forecasting elections. Public Opinion Quarterly, 78(1), 204–232. https://doi.org/10.1093/poq/nfu008
Graefe, A., & Armstrong, J. S. (2011). Comparing face-to-face meetings, nominal groups, Delphi and prediction markets on an estimation task. International Journal of Forecasting, 27(1), 183–195. https://doi.org/10.1016/j.ijforecast.2010.05.004
Graefe, A., Armstrong, J. S., Jones Jr, R. J., & Cuzán, A. G. (2014). Combining forecasts: An application to elections. International Journal of Forecasting, 30(1), 43–54.
Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424–438. https://doi.org/10.2307/1912791
Granger, C. W. J., & Newbold, P. (1976). Forecasting transformed series. Journal of the Royal Statistical Society: Series B (Methodological), 38(2), 189–203.
Granger, C. W. J., & Pesaran, M. H. (2000). Economic and statistical measures of forecast accuracy. Journal of Forecasting, 19, 537–560.
Granger, C. W. J., & Swanson, N. (1996). Future developments in the study of cointegrated variables. Oxford Bulletin of Economics and Statistics, 58(3), 537–553. https://doi.org/10.1111/j.1468-0084.1996.mp58003007.x
Granger, C. W., & Ramanathan, R. (1984). Improved methods of combining forecasts. Journal of Forecasting, 3(2), 197–204.
Graves, S. C. (1999). A Single-Item inventory model for a nonstationary demand process. Manufacturing & Service Operations Management, 1(1), 50–61. https://doi.org/10.1287/msom.1.1.50
Gray, C. W., Barnes, C. B., & Wilkinson, E. F. (1965). The process of prediction as a function of the correlation between two scaled variables. Psychonomic Science, 3(1), 231–231. https://doi.org/10.3758/BF03343111
Gray, John. (2015). Heresies: Against progress and other illusions. Granta Books.
Gray, J. (2015). Steven Pinker is wrong about violence and war. http://www.theguardian.com/books/2015/mar/13/john-gray-steven-pinker-wrong-violence-war-declining.
Gray, S. F. (1996). Modeling the conditional distribution of interest rates as a regime-switching process. Journal of Financial Economics, 42(1), 27–62. https://doi.org/10.1016/0304-405X(96)00875-6
Green, J., Hand, J. R. M., & Zhang, X. F. (2017). The characteristics that provide independent information about average u.s. Monthly stock returns. Review of Financial Studies, 30(12), 4389–4436.
Green, Kesten C., & Armstrong, J. S. (2007). Structured analogies for forecasting. International Journal of Forecasting, 23(3), 365–376. https://doi.org/10.1016/j.ijforecast.2007.05.005
Green, Kesten C., & Armstrong, J. S. (2015). Simple versus complex forecasting: The evidence. Journal of Business Research, 68(8), 1678–1685.
Greenberg, E. (2008). Introduction to bayesian econometrics. CUP.
Greiner, D. J. (2007). Ecological inference in voting rights act disputes: Where are we now, and where do we want to be? Jurimetrics, 47(2), 115–167.
Greiner, D. J., & Quinn, K. M. (2010). Exit polling and racial bloc voting: Combining individual-level and RxC ecological data. The Annals of Applied Statistics, 4(4), 1774–1796. https://doi.org/10.2307/23362448
Gresnigt, F., Kole, E., & Franses, P. H. (2015). Interpreting financial market crashes as earthquakes: A new early warning system for medium term crashes. Journal of Banking & Finance, 56, 123–139. https://doi.org/10.1016/j.jbankfin.2015.03.003
Gresnigt, F., Kole, E., & Franses, P. H. (2017a). Exploiting spillovers to forecast crashes. Journal of Forecasting, 36(8), 936–955. https://doi.org/10.1002/for.2434
Gresnigt, F., Kole, E., & Franses, P. H. (2017b). Specification testing in hawkes models. Journal of Financial Econometrics, 15(1), 139–171.
Gromenko, O., Kokoszka, P., & Reimherr, M. (2017). Detection of change in the spatiotemporal mean function. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 79(1), 29–50. https://doi.org/10.1111/rssb.12156
Gross, C. W., & Sohl, J. E. (1990). Disaggregation methods to expedite product line forecasting. Journal of Forecasting, 9(3), 233–254. https://doi.org/https://doi.org/10.1002/for.3980090304
Grossi, L., & Nan, F. (2019). Robust forecasting of electricity prices: Simulations, models and the impact of renewable sources. Technological Forecasting and Social Change, 141, 305–318. https://doi.org/10.1016/j.techfore.2019.01.006
Grushka-Cockayne, Y., & Jose, V. R. R. (2020). Combining prediction intervals in the M4 competition. International Journal of Forecasting, 36(1), 178–185.
Grushka-Cockayne, Y., Jose, V. R. R., & Lichtendahl, K. C. (2017). Ensembles of overfit and overconfident forecasts. Management Science, 63(4), 1110–1130. https://doi.org/10.1287/mnsc.2015.2389
Grushka-Cockayne, Y., Lichtendahl, K. C., Jose, V. R. R., & Winkler, R. L. (2017). Quantile evaluation, sensitivity to bracketing, and sharing business payoffs. Operations Research, 65(3), 712–728. https://doi.org/10.1287/opre.2017.1588
Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. Review of Financial Studies, 33(5), 2223–2273.
Guerrero, V. M. (1993). Time-series analysis supported by power transformations. Journal of Forecasting, 12(1), 37–48.
Guidolin, M., & Alpcan, T. (2019). Transition to sustainable energy generation in australia: Interplay between coal, gas and renewables. Renewable Energy, 139, 359–367.
Guidolin, M., & Guseo, R. (2015). Technological change in the u.s. Music industry: Within-product, cross–product and churn effects between competing blockbusters. Technological Forecasting and Social Change, 99, 35–46.
Guidolin, M., & Guseo, R. (2016). The german energy transition: Modeling competition and substitution between nuclear power and renewable energy technologies. Renewable and Sustainable Energy Reviews, 60, 1498–1504.
Guidolin, M., & Guseo, R. (2020). Has the iPhone cannibalized the iPad? An asymmetric competition model. Applied Stochastic Models in Business and Industry, 36, 465–476.
Guidolin, M., & Mortarino, C. (2010). Cross-country diffusion of photovoltaic systems: Modelling choices and forecasts for national adoption patterns. Technological Forecasting and Social Change, 77(2), 279–296.
Guidolin, Massimo, & Pedio, M. (2018). Essentials of time series for financial applications. Academic Press.
Guidolin, Massimo, & Pedio, M. (2019). Forecasting and trading monetary policy effects on the riskless yield curve with regime switching Nelson–Siegel models. Journal of Economic Dynamics & Control, 107, 103723. https://doi.org/10.1016/j.jedc.2019.103723
Guidolin, Massimo, & Thornton, D. L. (2018). Predictions of short-term rates and the expectations hypothesis. International Journal of Forecasting, 34(4), 636–664. https://doi.org/10.1016/j.ijforecast.2018.03.006
Guidolin, Massimo, & Timmermann, A. (2006). Term structure of risk under alternative econometric specifications. Journal of Econometrics, 131(1), 285–308. https://doi.org/https://doi.org/10.1016/j.jeconom.2005.01.033
Guidolin, Massimo, & Timmermann, A. (2009). Forecasts of US short-term interest rates: A flexible forecast combination approach. Journal of Econometrics, 150(2), 297–311.
Gumus, M., & Kiran, M. S. (2017). Crude oil price forecasting using XGBoost. In 2017 international conference on computer science and engineering (UBMK) (pp. 1100–1103). IEEE.
Gunter, U., & Önder, I. (2016). Forecasting city arrivals with Google Analytics. Annals Of Tourism Research, 61, 199–212. https://doi.org/10.1016/j.annals.2016.10.007
Gunter, U., Önder, I., & Gindl, S. (2019). Exploring the predictive ability of LIKES of posts on the facebook pages of four major city DMOs in Austria. Tourism Economics, 25(3), 375–401. https://doi.org/10.1177/1354816618793765
Guo, X., Grushka-Cockayne, Y., & De Reyck, B. (2020). Forecasting airport transfer passenger flow using real-time data and machine learning. Manufacturing & Service Operations Management.
Gupta, M., Gao, J., Aggarwal, C. C., & Han, J. (2013). Outlier detection for temporal data: A survey. IEEE Transactions on Knowledge and Data Engineering, 26(9), 2250–2267.
Gupta, S. (1994). Managerial judgment and forecast combination: An experimental study. Marketing Letters, 5(1), 5–17.
Gürkaynak, R. S., Kısacıkoğlu, B., & Rossi, B. (2013). Do DSGE models forecast more accurately out-of-sample than VAR models? Advances in Econometrics,VAR Models in Macroeconomics – New Developments and Applications: Essays in Honor of Christopher A. Sims, 32, 27–79.
Guseo, Renato. (2010). Partial and ecological correlation: A common three-term covariance decomposition. Statistical Methods & Applications, 19(1), 31–46. https://doi.org/10.1007/s10260-009-0117-0
Guseo, R., & Guidolin, M. (2009). Modelling a dynamic market potential: A class of automata networks for diffusion of innovations. Technological Forecasting and Social Change, 76, 806–820.
Guseo, R., & Guidolin, M. (2011). Market potential dynamics in innovation diffusion: Modelling the synergy between two driving forces. Technological Forecasting and Social Change, 78, 13–24.
Guseo, R., & Mortarino, C. (2010). Correction to the paper “optimal product launch times in a duopoly: Balancing life-cycle revenues with product cost.” Operations Research, 58, 1522–1523.
Guseo, R., & Mortarino, C. (2012). Sequential market entries and competition modelling in multi-innovation diffusions. European Journal of Operational Research, 216, 658–667.
Guseo, R., & Mortarino, C. (2014). Within-brand and cross-brand word-of-mouth for sequential multi-innovation diffusions. IMA Journal of Management Mathematics, 25, 287–311.
Guseo, R., & Mortarino, C. (2015). Modeling competition between two pharmaceutical drugs using innovation diffusion models. The Annals of Applied Statistics, 9, 2073–2089.
Gutierrez, R. S., Solis, A. O., & Mukhopadhyay, S. (2008). Lumpy demand forecasting using neural networks. International Journal of Production Economics, 111(2), 409–420. https://doi.org/10.1016/j.ijpe.2007.01.007
Gutterman, S., & Vanderhoof, I. T. (1998). Forecasting changes in mortality: A search for a law of causes and effects. North American Actuarial Journal, 2(4), 135–138.
Haas, M., Mittnik, S., & Paolella, M. S. (2004). A new approach to Markov-Switching GARCH models. Journal of Financial Econometrics, 2(4), 493–530. https://doi.org/10.1093/jjfinec/nbh020
Hahn, M., Frühwirth-Schnatter, S., & Sass, J. (2010). Markov chain Monte Carlo methods for parameter estimation in multidimensional continuous time markov switching models. Journal of Financial Econometrics, 8(1), 88–121. https://doi.org/10.1093/jjfinec/nbp026
Hajnal, J. (1955). The prospects for population forecasts. Journal of the American Statistical Association, 50(270), 309–322. https://doi.org/10.2307/2280963
Hall, P. (1990). Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems. Journal of Multivariate Analysis, 32(2), 177–203.
Hall, Stephen G., & Mitchell, J. (2007). Combining density forecasts. International Journal of Forecasting, 23(1), 1–13. https://doi.org/https://doi.org/10.1016/j.ijforecast.2006.08.001
Hall, S. G., & Mitchell, J. (2009). Recent developments in density forecasting. In T. C. Mills & K. Patterson (Eds.), Palgrave handbook of econometrics, volume 2: Applied econometrics (pp. 199–239). Palgrave MacMillan.
Hamill, T. M., & Colucci, S. J. (1997). Verification of Eta-RSM Short-Range Ensemble Forecasts. Monthly Weather Review, 125(6), 1312–1327.
Hamilton, J. D. (1988). Rational-expectations econometric analysis of changes in regime: An investigation of the term structure of interest rates. Journal of Economic Dynamics & Control, 12(2), 385–423. https://doi.org/10.1016/0165-1889(88)90047-4
Hamilton, J. D. (1990). Analysis of time series subject to changes in regime. Journal of Econometrics, 45(1), 39–70. https://doi.org/10.1016/0304-4076(90)90093-9
Hamilton, J. D. (2016). Macroeconomic regimes and regime shifts. In J. B. Taylor & H. Uhlig (Eds.), Handbook of Macroeconomics (Vol. 2, pp. 163–201). Elsevier.
Han, J., Pei, J., & Kamber, M. (2011). Data mining: Concepts and techniques. Elsevier.
Han, P. K., Klein, W. M., Lehman, T. C., Massett, H., Lee, S. C., & Freedman, A. N. (2009). Laypersons’ responses to the communication of uncertainty regarding cancer risk estimates. Medical Decision Making, 29(3), 391–403. https://doi.org/10.1177/0272989X08327396
Han, W., Wang, X., Petropoulos, F., & Wang, J. (2019). Brain imaging and forecasting: Insights from judgmental model selection. Omega, 87, 1–9. https://doi.org/10.1016/j.omega.2018.11.015
Han, Y., He, A., Rapach, D. E., & Zhou, G. (2021). Expected stock returns and firm characteristics: E-LASSO, assessment, and implications. SSRN:3185335.
Hand, D. J. (2009). Mining the past to determine the future - problems and possibilities. International Journal of Forecasting, 25(3), 441–451.
Hanley, J. A., Joseph, L., Platt, R. W., Chung, M. K., & Belisle, P. (2001). Visualizing the median as the minimum-deviation location. The American Statistician, 55(2), 150–152. https://doi.org/10.1198/000313001750358482
Hannan, E. J., & Quinn, B. G. (1979). The determination of the order of an autoregression. Journal of the Royal Statistical Society, B, 41, 190–195.
Hansen, B. E. (2001). The New Econometrics of Structural Change: Dating breaks in US labour productivity. Journal of Economic Perspectives, 15(4), 117–128.
Hansen, P. R. (2005). A test for superior predictive ability. Journal of Business & Economic Statistics, 23(4), 365–380. https://doi.org/10.1198/073500105000000063
Harford, T. (2014). Big data: A big mistake? Significance, 11, 14–19.
Harrell, F. E. (2015). Regression modeling strategies: With applications to linear models, logistic and ordinal regression, and survival analysis (2nd ed). New York, USA: Springer.
Harris, D., Martin, G. M., Perera, I., & Poskitt, D. S. (2019). Construction and visualization of confidence sets for frequentist distributional forecasts. Journal of Computational and Graphical Statistics, 28(1), 92–104.
Harris, R. D. F., & Yilmaz, F. (2010). Estimation of the conditional variance-covariance matrix of returns using the intraday range. International Journal of Forecasting, 26(1), 180–194. https://doi.org/10.1016/j.ijforecast.2009.02.009
Hart, R. A., Hutton, J., & Sharot, T. (1975). A Statistical Analysis of Association Football Attendances. Applied Statistics, 24(1), 17–27.
Harvey, Andrew C. (1990). Forecasting, structural time series models and the kalman filter. Cambridge University Press.
Harvey, A. C. (2013). Dynamic models for volatility and heavy tails: With applications to financial and economic time series. Cambridge University Press.
Harvey, C. R., Liu, Y., & Zhu, H. (2016)... and the cross-section of expected returns. Review of Financial Studies, 29(1), 5–68.
Harvey, D. I., Leybourne, S. J., & Newbold, P. (1998). Tests for forecast encompassing. Journal of Business & Economic Statistics, 16(2), 254–259. https://doi.org/10.1080/07350015.1998.10524759
Harvey, N. (1995). Why are judgments less consistent in less predictable task situations? Organizational Behavior and Human Decision Processes, 63(3), 247–263. https://doi.org/10.1006/obhd.1995.1077
Harvey, N. (2007). Use of heuristics: Insights from forecasting research. Thinking & Reasoning, 13(1), 5–24. https://doi.org/10.1080/13546780600872502
Harvey, N. (2011). Anchoring and adjustment: A Bayesian heuristic? In W. Brun, G. Keren, G. Kirkebøen, & H. Montgomery (Eds.), Perspectives on thinking, judging, and decision making (pp. 98–108). Oslo: Universitetsforlaget.
Harvey, N. (2019). Commentary: Algorithmic aversion and judgmental wisdom. Foresight: The International Journal of Applied Forecasting, 54, 13–14.
Harvey, N., & Bolger, F. (1996). Graphs versus tables: Effects of data presentation format on judgemental forecasting. International Journal of Forecasting, 12(1), 119–137. https://doi.org/10.1016/0169-2070(95)00634-6
Harvey, N., Bolger, F., & McClelland, A. (1994). On the nature of expectations. British Journal of Psychology, 85(2), 203–229. https://doi.org/10.1111/j.2044-8295.1994.tb02519.x
Harvey, N., & Reimers, S. (2013). Trend damping: Under-adjustment, experimental artifact, or adaptation to features of the natural environment? Journal of Experimental Psychology. Learning, Memory, and Cognition, 39(2), 589–607. https://doi.org/10.1037/a0029179
Hasbrouck, J. (1995). One Security, Many Markets: Determining the Contributions to Price Discovery. Journal of Finance, 50(4), 1175–1199.
Hasni, M., Aguir, M. S., Babai, M. Z., & Jemai, Z. (2019a). On the performance of adjusted bootstrapping methods for intermittent demand forecasting. International Journal of Production Economics, 216, 145–153. https://doi.org/10.1016/j.ijpe.2019.04.005
Hasni, M., Aguir, M. S., Babai, M. Z., & Jemai, Z. (2019b). Spare parts demand forecasting: A review on bootstrapping methods. International Journal of Production Research, 57(15-16), 4791–4804. https://doi.org/10.1080/00207543.2018.1424375
Hassan, S., Arroyo, J., Galán Ordax, J. M., Antunes, L., & Pavón Mestras, J. (2013). Asking the oracle: Introducing forecasting principles into agent-based modelling. Journal of Artificial Societies and Social Simulation, 16(3).
Hassani, H., & Silva, E. S. (2015). Forecasting with big data: A review. Annals of Data Science, 2, 5–19.
Hastie, T. J., & Tibshirani, R. J. (1990). Generalized additive models (Vol. 43). CRC press.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning. Springer-Verlag GmbH.
Haugen, R. A. (2010). The new finance, overreaction, complexity, and their consequences (4th ed.). Book, Pearson Education.
Haugen, R. A., & Baker, N. L. (1996). Commonality in the determinants of expected stock returns. Journal of Financial Economics, 41(3), 401–439.
Hawkes, A. G. (1969). An approach to the analysis of electoral swing. Journal of the Royal Statistical Society, Series A, 132(1), 68–79. https://doi.org/10.2307/2343756
Hawkes, Alan G. (1971). Point spectra of some mutually exciting point processes. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 33(3), 438–443.
Hawkes, Alan G. (2018). Hawkes processes and their applications to finance: A review. Quantitative Finance, 18(2), 193–198. https://doi.org/10.1080/14697688.2017.1403131
Hawkes, Alan G., & Oakes, D. (1974). A cluster process representation of a Self-Exciting process. Journal of Applied Probability, 11(3), 493–503. https://doi.org/10.2307/3212693
Hayes, B. (2002). Computing science: Statistics of deadly quarrels. American Scientist, 90, 10–14.
He, A. W. W., Kwok, J. T. K., & Wan, A. T. K. (2010). An empirical model of daily highs and lows of West Texas Intermediate crude oil prices. Energy Economics, 32(6), 1499–1506. https://doi.org/10.1016/j.eneco.2010.07.012
He, K., Yu, L., & Lai, K. K. (2012). Crude oil price analysis and forecasting using wavelet decomposed ensemble model. Energy, 46(1), 564–574.
Hecht, R., & Gandhi, G. (2008). Demand forecasting for preventive AIDS vaccines. Pharmacoeconomics, 26(8), 679–697.
Hedonometer. (2020). Hedonometer word list. https://hedonometer.org/words/labMT-en-v2/.
Heinrich, C. (2014). The mode functional is not elicitable. Biometrika, 101(1), 245–251.
Heinrich, Claudio. (2020). On the number of bins in a rank histogram. Quarterly Journal of the Royal Meteorological Society.
Heinrich, Claudio, Hellton, K. H., Lenkoski, A., & Thorarinsdottir, T. L. (2020). Multivariate postprocessing methods for high-dimensional seasonal weather forecasts. Journal of the American Statistical Association.
Heligman, L., & Pollard, J. H. (1980). The age pattern of mortality. Journal of the Institute of Actuaries, 107, 49–80.
Hemri, S. (2018). Applications of postprocessing for hydrological forecasts. In Statistical postprocessing of ensemble forecasts (pp. 219–240). Elsevier.
Hemri, S., Lisniak, D., & Klein, B. (2015). Multivariate postprocessing techniques for probabilistic hydrological forecasting. Water Resources Research, 51(9), 7436–7451.
Hendriks, F., Kienhues, D., & Bromme, R. (2015). Measuring laypeople’s trust in experts in a digital age: The muenster epistemic trustworthiness inventory (METI). PloS One, 10(10), e0139309. https://doi.org/10.1371/journal.pone.0139309
Hendry, D. F. (2001). Modelling UK inflation, 1875-1991. Journal of Applied Econometrics, 16, 255–275.
Hendry, David F. (2006). Robustifying Forecasts from Equilibrium-Correction Systems. Journal of Econometrics, 135(1-2), 399–426.
Hendry, David F. (2010). Equilibrium-correction models. In Macroeconometrics and time series analysis (pp. 76–89). Springer.
Hendry, D. F. (Ed.). (2015). Introductory macro-econometrics: A new approach. London: Timberlake Consultants Press.
Hendry, D. F. (2020). First-in, first-out: Modelling the UK’s CO2 emissions, 1860–2016 (Working Paper 2020-{W}02). Oxford University: Nuffield College.
Hendry, D. F., & Clements, M. P. (2001). Forecasting non-stationary economic time series. Cambridge, Mass.: MIT Press.
Hendry, D. F., & Doornik, J. A. (2014). Empirical model discovery and theory evaluation. Cambridge MA: MIT Press.
Hendry, D. F., Johansen, S., & Santos, C. (2008a). Automatic selection of indicators in a fully saturated regression. Computational Statistics, 33, 317–335.
Hendry, D. F., Johansen, S., & Santos, C. (2008b). Automatic selection of indicators in a fully saturated regression. Computational Statistics & Data Analysis, 33, 317–335.
Hendry, D. F., & Mizon, G. E. (2012). Open-model forecast-error taxonomies. In X. Chen & N. R. Swanson (Eds.), Recent advances and future directions in causality, prediction, and specification analysis (pp. 219–240). Springer.
Hengel, G. van den, & Franses, P. H. (2020). Forecasting social conflicts in Africa using an epidemic type aftershock sequence model. Forecasting, 2(3), 284–308. https://doi.org/10.3390/forecast2030016
Herbst, E., & Schorfheide, F. (2016). Bayesian Estimation of DSGE models (1st ed.). Princeton University Press.
Herrera, A. M., Hu, L., & Pastor, D. (2018). Forecasting crude oil price volatility. International Journal of Forecasting, 34(4), 622–635.
Herrera, R., & González, N. (2014). The modeling and forecasting of extreme events in electricity spot markets. International Journal of Forecasting, 30(3), 477–490. https://doi.org/10.1016/j.ijforecast.2013.12.011
Herron, M. C., & Shotts, K. W. (2004). Logical inconsistency in EI-Based Second-Stage regressions. American Journal of Political Science, 48(1), 172–183. https://doi.org/10.2307/1519904
Hertzum, M. (2002). The importance of trust in software engineers’ assessment and choice of information sources. Information and Organization, 12(1), 1–18. https://doi.org/10.1016/S1471-7727(01)00007-0
Hertzum, M. (2014). Expertise seeking: A review. Information Processing & Management, 50(5), 775–795. https://doi.org/10.1016/j.ipm.2014.04.003
Hevia, C., Gonzalez-Rozada, M., Sola, M., & Spagnolo, F. (2015). Estimating and Forecasting the Yield Curve Using A Markov Switching Dynamic Nelson and Siegel Model. Journal of Applied Economics, 30(6), 987–1009. https://doi.org/10.1002/jae.2399
Hewamalage, H., Bergmeir, C., & Bandara, K. (2021). Recurrent neural networks for time series forecasting: Current status and future directions. International Journal of Forecasting, 37(1), 388–427.
Hii, Y. L., Zhu, H., Ng, N., Ng, L. C., & Rocklöv, J. (2012). Forecast of dengue incidence using temperature and rainfall. PLoS Neglected Tropical Diseases, 6(11), e1908.
Hill, C. A., Zhang, G. P., & Miller, K. E. (2018). Collaborative planning, forecasting, and replenishment & firm performance: An empirical evaluation. International Journal of Production Economics, 196, 12–23. https://doi.org/10.1016/j.ijpe.2017.11.012
Hillebrand, E., & Medeiros, M. C. (2010). The benefits of bagging for forecast models of realized volatility. Econometric Reviews, 29(5-6), 571–593.
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580.
Hinton, H. L., Jr. (1999). Defence inventory, continuing challenger in managing inventories and avoiding adverse operational effects. US General Accounting Office.
Hipel, K. W., & McLeod, A. I. (1994). Time series modelling of water resources and environmental systems. Elsevier.
Hippert, H. S., Pedreira, C. E., & Souza, R. C. (2001). Neural networks for short-term load forecasting: A review and evaluation. IEEE Transactions on Power Systems, 16(1), 44–55. https://doi.org/10.1109/59.910780
Hobijn, B., Franses, P. H., & Ooms, M. (2004). Generalizations of the KPSS-test for stationarity. Statistica Neerlandica, 58(4), 483–502. https://doi.org/10.1111/j.1467-9574.2004.00272.x
Hodges, P., Hogan, K., Peterson, J. R., & Ang, A. (2017). Factor timing with cross-sectional and time-series predictors. Journal of Portfolio Management, 44(1), 30–43. Journal Article. https://doi.org/10.3905/jpm.2017.44.1.030
Hodrick, R. J., & Prescott, E. C. (1997). Postwar US business cycles: An empirical investigation. Journal of Money, Credit, and Banking, 1–16.
Hoeltgebaum, H., Borenstein, D., Fernandes, C., & Veiga, Á. (2021). A score-driven model of short-term demand forecasting for retail distribution centers. Journal of Retailing, 97(4), 715–725. https://doi.org/https://doi.org/10.1016/j.jretai.2021.05.003
Hoem, J. M., Madsen, D., Nielsen, J. L., Ohlsen, E. M., Hansen, H. O., & Rennermalm, B. (1981). Experiments in modelling recent Danish fertility curves. Demography, 18(2), 231–244.
Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model averaging: A tutorial (with discussion). Statistical Science, 214, 382–417.
Hofmann, E., & Rutschmann, E. (2018). Big data analytics and demand forecasting in supply chains: A conceptual analysis. The International Journal of Logistics Management, 29(2), 739–766. https://doi.org/10.1108/IJLM-04-2017-0088
Hogarth, R. M., & Makridakis, S. (1981). Forecasting and planning: An evaluation. Management Science, 27(2), 115–138. https://doi.org/10.1287/mnsc.27.2.115
Holly, S., Pesaran, M. H., & Yamagata, T. (2010). Spatial and temporal diffusion of house prices in the U.K. (IZA Discussion Papers No. 4694). Institute of Labor Economics (IZA).
Hollyman, R., Petropoulos, F., & Tipping, M. E. (2021). Understanding forecast reconciliation. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2021.01.017
Holt, C. C. (2004). Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting, 20(1), 5–10. https://doi.org/10.1016/j.ijforecast.2003.09.015
Homburg, A., Weiß, C. H., Alwan, L. C., Frahm, G., & Göb, R. (2019). Evaluating approximate point forecasting of count processes. Econometrics, 7(3), 1–28.
Homburg, A., Weiß, C. H., Alwan, L. C., Frahm, G., & Göb, R. (2020). A performance analysis of prediction intervals for count time series. Journal of Forecasting.
Hong, T., & Fan, S. (2016). Probabilistic electric load forecasting: A tutorial review. International Journal of Forecasting, 32(3), 914–938. https://doi.org/10.1016/j.ijforecast.2015.11.011
Hong, T., & Pinson, P. (2019). Energy forecasting in the big data world. International Journal of Forecasting, 35(4), 1387–1388.
Hong, T., Pinson, P., & Fan, S. (2014). Global energy forecasting competition 2012. International Journal of Forecasting, 30(2), 357–363. https://doi.org/10.1016/j.ijforecast.2013.07.001
Hong, T., Pinson, P., Fan, S., Zareipour, H., Troccoli, A., & Hyndman, R. J. (2016). Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond. International Journal of Forecasting, 32(3), 896–913. https://doi.org/10.1016/j.ijforecast.2016.02.001
Hong, T., Pinson, P., Wang, Y., Weron, R., Yang, D., & Zareipour, H. (2020). Energy forecasting: A review and outlook. IEEE Open Access Journal of Power and Energy, 7, 376–388. https://doi.org/10.1109/oajpe.2020.3029979
Hong, T., Xie, J., & Black, J. (2019). Global energy forecasting competition 2017: Hierarchical probabilistic load forecasting. International Journal of Forecasting, 35(4), 1389–1399.
Hong, W.-C. (2011). Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing, 74(12-13), 2096–2107.
Hong, Y., Li, H., & Zhao, F. (2004). Out-of-Sample performance of Discrete-Time spot interest rate models. Journal of Business & Economic Statistics, 22(4), 457–473. https://doi.org/10.1198/073500104000000433
Honnibal, M. (2015). spaCy: Industrial-strength Natural Language Processing (NLP) with Python and Cython. https://spacy.io.
Honoré, C., Menut, L., Bessagnet, B., Meleux, F., Rouïl, L., Vautard, R., … Peuch, V. (2007). An integrated air quality forecast system for a metropolitan area. Development in Environmental Science, 6, 292–300.
Hooker, R. H. (1901). The suspension of the Berlin produce exchange and its effect upon corn prices. Journal of the Royal Statistical Society, 64(4), 574–613.
Hopman, D., Koole, G., & Mei, R. van der. (2021). A machine learning approach to itinerary-level booking prediction in competitive airline markets. arXiv:2103.08405.
Hora, S. C. (2004). Probability judgments for continuous quantities: Linear combinations and calibration. Management Science, 50(5), 597–604.
Hörmann, S., Horváth, L., & Reeder, R. (2013). A functional version of the ARCH model. Econometric Theory, 29(2), 267–288.
Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2), 251–257. https://doi.org/10.1016/0893-6080(91)90009-T
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359–366.
Horrace, W. C., & Schmidt, P. (2000). Multiple comparisons with the best, with economic applications. Journal of Applied Econometrics, 15(1), 1–26. https://doi.org/10.1002/(SICI)1099-1255(200001/02)15:1<1::AID-JAE551>3.0.CO;2-Y
Horst, E. T., Rodriguez, A., Gzyl, H., & Molina, G. (2012). Stochastic volatility models including open, close, high and low prices. Quantitative Finance, 12(2), 199–212. https://doi.org/10.1080/14697688.2010.492233
Horváth, L., & Kokoszka, P. (2012). Inference for Functional Data with Applications. New York: Springer.
Horváth, L., Kokoszka, P., & Rice, G. (2014). Testing stationarity of functional time series. Journal of Econometrics, 179(1), 66–82.
Horváth, Lajos, Liu, Z., Rice, G., & Wang, S. (2020). A functional time series analysis of forward curves derived from commodity futures. International Journal of Forecasting, 36(2), 646–665. https://doi.org/10.1016/j.ijforecast.2019.08.003
Hoskins, B. (2013). The potential for skill across the range of the seamless weather-climate prediction problem: A stimulus for our science. Quarterly Journal of the Royal Meteorological Society, 139(672), 573–584. https://doi.org/10.1002/qj.1991
Hossin, M., & Sulaiman, M. (2015). A review on evaluation metrics for data classification evaluations. International Journal of Data Mining & Knowledge Management Process, 5(2), 1–11.
Hou, K., Xue, C., & Zhang, L. (2020). Replicating anomalies. Review of Financial Studies, 33(5), 2019–2133.
Hou, Y., Edara, P., & Sun, C. (2014). Traffic flow forecasting for urban work zones. IEEE Transactions on Intelligent Transportation Systems, 16(4), 1761–1770.
Hsu, J. C. (1981). Simultaneous confidence intervals for all distances from the “best". The Annals of Statistics, 1026–1034. https://doi.org/10.1214/aos/1176345582
Hu, K., Acimovic, J., Erize, F., Thomas, D. J., & Van Mieghem, J. A. (2019). Forecasting new product life cycle curves: Practical approach and empirical analysis. Manufacturing & Service Operations Management, 21(1), 66–85.
Huang, C., Chen, S., Yang, S., & Kuo, C. (2015). One-day-ahead hourly forecasting for photovoltaic power generation using an intelligent method with weather-based forecasting models. IET Generation, Transmission and Distribution, 9(14), 1874–1882. https://doi.org/10.1049/iet-gtd.2015.0175
Huang, D., Jiang, F., Tu, J., & Zhou, G. (2015). Investor sentiment aligned: A powerful predictor of stock returns. Review of Financial Studies, 28(3), 791–837.
Huang, J., Horowitz, J. L., & Wei, F. (2010). Variable selection in nonparametric additive models. Annals of Statistics, 38(4), 2282–2313.
Huang, T., Fildes, R., & Soopramanien, D. (2019). Forecasting retailer product sales in the presence of structural change. European Journal of Operational Research, 279(2), 459–470. https://doi.org/https://doi.org/10.1016/j.ejor.2019.06.011
Huard, D., Évin, G., & Favre, A.-C. (2006). Bayesian copula selection. Computational Statistics & Data Analysis, 51(2), 809–822.
Hubáček, O., Šourek, G., & Železnỳ, F. (2019). Exploiting sports-betting market using machine learning. International Journal of Forecasting, 35(2), 783–796.
Huber, J., & Stuckenschmidt, H. (2020). Daily retail demand forecasting using machine learning with emphasis on calendric special days. International Journal of Forecasting. https://doi.org/https://doi.org/10.1016/j.ijforecast.2020.02.005
Huberty, M. (2015). Can we vote with our tweet? On the perennial difficulty of election forecasting with social media. International Journal of Forecasting, 31(3), 992–1007. https://doi.org/10.1016/j.ijforecast.2014.08.005
Hubicka, K., Marcjasz, G., & Weron, R. (2018). A note on averaging day-ahead electricity price forecasts across calibration windows. IEEE Transactions on Sustainable Energy, 10(1), 321–323.
Hughes, M. C. (2001). Forecasting practice: Organisational issues. The Journal of the Operational Research Society, 52(2), 143–149. https://doi.org/10.1057/palgrave.jors.2601066
Huh, S.-Y., & Lee, C.-Y. (2014). Diffusion of renewable energy technologies in South Korea on incorporating their competitive interrelationships. Energy Policy, 69, 248–257. https://doi.org/10.1016/j.enpol.2014.02.028
Hui, F. K. C., Warton, D. I., & Foster, S. D. (2015). Tuning Parameter Selection for the Adaptive Lasso Using ERIC. Journal of the American Statistical Society, 110(509), 262–269.
Hylleberg, S., Engle, R. F., Granger, C. W. J., & Yoo, B. S. (1990). Seasonal integration and cointegration. Journal of Econometrics, 44(1), 215–238. https://doi.org/10.1016/0304-4076(90)90080-D
Hyndman, Rob J. (1996). Computing and graphing highest density regions. The American Statistician, 50(2), 120–126. https://doi.org/10.1080/00031305.1996.10474359
Hyndman, Rob J. (2020). Quality measure for predictive highest density regions. Cross Validated. Retrieved from https://stats.stackexchange.com/q/483882
Hyndman, Rob J., Ahmed, R. A., Athanasopoulos, G., & Shang, H. L. (2011). Optimal combination forecasts for hierarchical time series. Computational Statistics and Data Analysis, 55(9), 2579–2589.
Hyndman, Rob J., & Athanasopoulos, G. (2018). Forecasting: Principles and practice (2nd ed.). Melbourne, Australia: OTexts.
Hyndman, Rob J., & Athanasopoulos, G. (2021). Forecasting: Principles and practice (3rd ed.). Melbourne, Australia: OTexts. Retrieved from https://otexts.com/fpp3/
Hyndman, Rob J., Bashtannyk, D. M., & Grunwald, G. K. (1996). Estimating and visualizing conditional densities. Journal of Computational and Graphical Statistics, 5(4), 315–336.
Hyndman, Rob J., & Billah, B. (2003). Unmasking the theta method. International Journal of Forecasting, 19(2), 287–290. https://doi.org/10.1016/S0169-2070(01)00143-1
Hyndman, Rob J., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2008). Forecasting with exponential smoothing: The state space approach. Berlin: Springer Verlag.
Hyndman, Rob J., Koehler, A. B., Snyder, R., & Grose, S. (2002). A state space framework for automatic forecasting using exponential smoothing methods. International Journal of Forecasting, 18(3), 439–454. https://doi.org/10.1016/S0169-2070(01)00110-8
Hyndman, R. J., & Shang, H. L. (2009). Forecasting functional time series (with discussions). Journal of the Korean Statistical Society, 38(3), 199–221.
Hyndman, R. J., & Ullah, M. S. (2007). Robust forecasting of mortality and fertility rates: A functional data approach. Computational Statistics & Data Analysis, 51(10), 4942–4956.
Hyndman, R. J., Zeng, Y., & Shang, H. L. (2021). Forecasting the old-age dependency ratio to determine a sustainable pension age. Australian & New Zealand Journal of Statistics, in press.
Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O’Hara-Wild, M., … Yasmeen, F. (2020). forecast: Forecasting functions for time series and linear models.
Hyppöla, J., Tunkelo, A., & Törnqvist, L. (Eds.). (1949). Suomen väestöä, sen uusiutumista ja tulevaa kehitystä koskevia laskelmia (Vol. 38). Helsinki: Statistics Finland.
Ibrahim, R., & L’Ecuyer, P. (2013). Forecasting call center arrivals: Fixed-effects, mixed-effects, and bivariate models. Manufacturing & Service Operations Management, 15(1), 72–85.
Ibrahim, R., Ye, H., L’Ecuyer, P., & Shen, H. (2016). Modeling and forecasting call center arrivals: A literature survey and a case study. International Journal of Forecasting, 32(3), 865–874.
IEA, Paris. (2020). Electricity information: overview. Retrieved from www.iea.org/reports/electricity-information-overview
ifo Institute. (2020). ifo Business Climate Index for Germany. https://www.ifo.de/en/survey/ifo-business-climate-index.
IHME COVID-19 health service utilization forecasting team, & Murray, C. J. L. (2020a). Forecasting COVID-19 impact on hospital bed-days, ICU-days, ventilator-days and deaths by US state in the next 4 months. Medrxiv;2020.03.27.20043752v1. https://doi.org/10.1101/2020.03.27.20043752
IHME COVID-19 health service utilization forecasting team, & Murray, C. J. L. (2020b). Forecasting the impact of the first wave of the COVID-19 pandemic on hospital demand and deaths for the USA and european economic area countries. Medrxiv;2020.04.21.20074732v1. https://doi.org/10.1101/2020.04.21.20074732
Ince, O. (2014). Forecasting exchange rates out-of-sample with panel methods and real-time data. Journal of International Money and Finance, 43(C), 1–18.
Inoue, A., Jin, L., & Rossi, B. (2017). Rolling window selection for out-of-sample forecasting with time-varying parameters. Journal of Econometrics, 196(1), 55–67.
Inoue, A., & Kilian, L. (2008). How useful is bagging in forecasting economic time series? A case study of US consumer price inflation. Journal of the American Statistical Association, 103(482), 511–522.
Ioannidis, J. P. A., Cripps, S., & Tanner, M. A. (2020). Forecasting for COVID-19 has failed. International Journal of Forecasting. https://doi.org/10.1016/j.ijforecast.2020.08.004
Irwin, G. A., & Meeter, D. A. (1969). Building voter transition models from aggregate data. Midwest Journal of Political Science, 13(4), 545–566. https://doi.org/10.2307/2110071
Islam, T., & Meade, N. (2000). Modelling diffusion and replacement. European Journal of Operational Research, 125(3), 551–570. https://doi.org/10.1016/S0377-2217(99)00225-8
Ivanov, S., & Zhechev, V. (2012). Hotel revenue management – a critical literature review. Tourism: An International Interdisciplinary Journal, 60(2), 175–197.
Jacobs, J. P. A. M., & Norden, S. van. (2011). Modeling data revisions: Measurement error and dynamics of “true” values. Journal of Econometrics, 161, 101–109.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning with applications in r. New York, USA: Springer.
Jammazi, R., & Aloui, C. (2012). Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling. Energy Economics, 34(3), 828–841.
Janczura, J., Trück, S., Weron, R., & Wolff, R. C. (2013). Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling. Energy Economics, 38, 96–110. https://doi.org/10.1016/j.eneco.2013.03.013
Janke, T., & Steinke, F. (2019). Forecasting the price distribution of continuous intraday electricity trading. Energies, 12(22), 4262.
Janssen, F. (2018). Advances in mortality forecasting: introduction. Genus, 74(21).
Januschowski, T., Arpin, D., Salinas, D., Flunkert, V., Gasthaus, J., Stella, L., & Vazquez, P. (2018). Now available in amazon SageMaker: DeepAR algorithm for more accurate time series forecasting. https://aws.amazon.com/blogs/machine-learning/now-available-in-amazon-sagemaker-deepar-algorithm-for-more-accurate-time-series-forecasting/.
Januschowski, T., Gasthaus, J., Wang, Y., Rangapuram, S. S., & Callot, L. (2018). Deep learning for forecasting: Current trends and challenges. Foresight: The International Journal of Applied Forecasting, 51, 42–47.
Januschowski, T., Gasthaus, J., Wang, Y., Salinas, D., Flunkert, V., Bohlke-Schneider, M., & Callot, L. (2020). Criteria for classifying forecasting methods. International Journal of Forecasting, 36(1), 167–177.
Januschowski, T., & Kolassa, S. (2019). A classification of business forecasting problems. Foresight: The International Journal of Applied Forecasting, 52, 36–43.
Jardine, A. K. S., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, 20(7), 1483–1510. https://doi.org/10.1016/j.ymssp.2005.09.012
Jennings, W., Lewis-Beck, M., & Wlezien, C. (2020). Election forecasting: Too far out? International Journal of Forecasting, 36(3), 949–962. https://doi.org/10.1016/j.ijforecast.2019.12.002
Jeon, Jooyoung, Panagiotelis, A., & Petropoulos, F. (2019). Probabilistic forecast reconciliation with applications to wind power and electric load. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2019.05.020
Jeon, J., & Taylor, J. W. (2016). Short-term density forecasting of wave energy using ARMA-GARCH models and kernel density estimation. International Journal of Forecasting, 32(3), 991–1004. https://doi.org/10.1016/j.ijforecast.2015.11.003
Jiang, J. J., Muhanna, W. A., & Pick, R. A. (1996). The impact of model performance history information on users’ confidence in decision models: An experimental examination. Computers in Human Behavior, 12(2), 193–207. https://doi.org/10.1016/0747-5632(96)00002-7
Jiao, E. X., & Chen, J. L. (2019). Tourism forecasting: A review of methodological developments over the last decade. Tourism Economics, 25(3), 469–492.
Jing, G., Cai, W., Chen, H., Zhai, D., Cui, C., & Yin, X. (2018). An air balancing method using support vector machine for a ventilation system. Building and Environment, 143, 487–495. https://doi.org/https://doi.org/10.1016/j.buildenv.2018.07.037
Joe, H. (1997). Multivariate models and dependence concepts. Chapman & Hall, London.
Joe, H. (2005). Asymptotic efficiency of the two-stage estimation method for copula-based models. Journal of Multivariate Analysis, 94(2), 401–419. https://doi.org/10.1016/j.jmva.2004.06.003
Joe, H. (2014). Dependence modeling with copulas. CRC Press.
Johansen, S. J., & Nielsen, B. (2009). An Analysis of the Indicator Saturation Estimator As a Robust Regression Estimator. In J. L. Castle & N. Shephard (Eds.), The Methodology and Practice of Econometrics: A Festschrift in Honour of David F. Hendry (pp. 1–35). Oxford; New York: Oxford University Press.
Johnes, G. (1999). Forecasting unemployment. Applied Economics Letters, 6(9), 605–607.
Johnson, B. B., & Slovic, P. (1995). Presenting uncertainty in health risk assessment: Initial studies of its effects on risk perception and trust. Risk Analysis, 15(4), 485–494. https://doi.org/10.1111/j.1539-6924.1995.tb00341.x
Johnston, D. M. (2008). The historical foundations of world order: The tower and the arena. Martinus Nijhoff Publishers.
Johnston, R., & Pattie, C. (2000). Ecological inference and Entropy-Maximizing: An alternative estimation procedure for Split-Ticket voting. Political Analysis, 8(4), 333–345. https://doi.org/10.1093/oxfordjournals.pan.a029819
Johnstone, D. J., Jose, V. R. R., & Winkler, R. L. (2011). Tailored scoring rules for probabilities. Decision Analysis, 8(4), 256–268. https://doi.org/10.1287/deca.1110.0216
Joiner, T. A., Leveson, L., & Langfield-Smith, K. (2002). Technical language, advice understandability, and perceptions of expertise and trustworthiness: The case of the financial planner. Australian Journal of Management, 27(1), 25–43. https://doi.org/10.1177/031289620202700102
Jondeau, E. (2007). Financial modelling under non-gaussian distributions (1st ed.). Book, London: Springer.
Jongbloed, G., & Koole, G. (2001). Managing uncertainty in call centres using poisson mixtures. Applied Stochastic Models in Business and Industry, 17(4), 307–318.
Jonung, L., & Larch, M. (2006). Improving fiscal policy in the EU: The case for independent forecasts. Economic Policy, 21(47), 491–534.
Jordá, O., Knüppelc, M., & Marcellino, M. (2013). Empirical simultaneous prediction regions for path-forecasts. International Journal of Forecasting, 29(3), 456–468.
Jore, A. S., Mitchell, J., & Vahey, S. P. (2010). Combining forecast densities from VARs with uncertain instabilities. Journal of Applied Econometrics, 25(4), 621–634. https://doi.org/10.1002/jae.1162
Jose, V. R. R., Grushka-Cockayne, Y., & Lichtendahl, K. C. (2014). Trimmed opinion pools and the crowd’s calibration problem. Management Science, 60(2), 463–475.
Jose, V. R. R., Nau, R. F., & Winkler, R. L. (2008). Scoring rules, generalized entropy, and utility maximization. Operations Research, 56(5), 1146–1157. https://doi.org/10.1287/opre.1070.0498
Jose, V. R. R., & Winkler, R. L. (2008). Simple robust averages of forecasts: Some empirical results. International Journal of Forecasting, 24(1), 163–169.
Jose, V. R. R., & Winkler, R. L. (2009). Evaluating quantile assessments. Operations Research, 57(5), 1287–1297. https://doi.org/10.1287/opre.1080.0665
Joslyn, S. L., Nadav-Greenberg, L., Taing, M. U., & Nichols, R. M. (2009). The effects of wording on the understanding and use of uncertainty information in a threshold forecasting decision. Applied Cognitive Psychology, 23(1), 55–72. https://doi.org/10.1002/acp.1449
Joslyn, S. L., & Nichols, R. M. (2009). Probability or frequency? Expressing forecast uncertainty in public weather forecasts. Meteorological Applications, 16(3), 309–314. https://doi.org/10.1002/met.121
Julier, S. J., & Uhlmann, J. K. (1997). New extension of the Kalman filter to nonlinear systems. In I. Kadar (Ed.), Signal processing, sensor fusion, and target recognition VI (Vol. 3068, pp. 182–193). International Society for Optics; Photonics; SPIE.
Jung, R. C., & Tremayne, A. R. (2006). Coherent forecasting in integer time series models. International Journal of Forecasting, 22(2), 223–238.
Kaastra, I., & Boyd, M. (1996). Designing a neural network for forecasting financial and economic time series. Neurocomputing, 10(3), 215–236. https://doi.org/10.1016/0925-2312(95)00039-9
Kaboudan, M. (2001). Compumetric forecasting of crude oil prices. In Proceedings of the 2001 congress on evolutionary computation (IEEE cat. No. 01TH8546) (pp. 283–287). IEEE.
Kagraoka, Y. (2016). Common dynamic factors in driving commodity prices: Implications of a generalized dynamic factor model. Economic Modelling, 52, 609–617. https://doi.org/10.1016/j.econmod.2015.10.005
Kahn, K. B. (2002). An exploratory investigation of new product forecasting practices. Journal of Product Innovation Management, 19(2), 133–143. https://doi.org/10.1111/1540-5885.1920133
Kahneman, Daniel. (2011). Thinking, fast and slow. London: Penguin books.
Kahneman, Daniel, & Tversky, A. (1973). On the psychology of prediction. Psychological Review, 80(4), 237–251. https://doi.org/10.1037/h0034747
Kahneman, D., & Tversky, A. (1996). On the reality of cognitive illusions. Psychological Review, 103(3), 582-91; discusion 592-6. https://doi.org/10.1037/0033-295x.103.3.582
Kalamara, E., Turrell, A., Redl, C., Kapetanios, G., & Kapadia, S. (2020). Making text count: Economic forecasting using newspaper text (Staff working paper No. 865). Bank of England.
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Fluids Engineering, 82(1), 35–45.
Kamarianakis, Y., & Prastacos, P. (2005). Space–time modeling of traffic flow. Computers & Geosciences, 31(2), 119–133.
Kamisan, N. A. B., Lee, M. H., Suhartono, S., Hussin, A. G., & Zubairi, Y. Z. (2018). Load forecasting using combination model of multiple linear regression with neural network for Malaysian city. Sains Malaysiana, 47(2), 419–426.
Kang, S. H., Kang, S.-M., & Yoon, S.-M. (2009). Forecasting volatility of crude oil markets. Energy Economics, 31(1), 119–125.
Kang, Y. (2012). Real-time change detection in time series based on growing feature quantization. In The 2012 international joint conference on neural networks (IJCNN) (pp. 1–6). https://doi.org/10.1109/IJCNN.2012.6252381
Kang, Y., Belušić, D., & Smith-Miles, K. (2014). Detecting and classifying events in noisy time series. Journal of the Atmospheric Sciences, 71(3), 1090–1104. https://doi.org/10.1175/JAS-D-13-0182.1
Kang, Y., Belušić, D., & Smith-Miles, K. (2015). Classes of structures in the stable atmospheric boundary layer. Quarterly Journal of the Royal Meteorological Society, 141(691), 2057–2069. https://doi.org/10.1002/qj.2501
Kang, Y., Hyndman, R. J., & Li, F. (2020). GRATIS: GeneRAting TIme Series with diverse and controllable characteristics. Statistical Analysis and Data Mining, 13(4), 354–376.
Kang, Y., Hyndman, R. J., & Smith-Miles, K. (2017). Visualising forecasting algorithm performance using time series instance spaces. International Journal of Forecasting, 33(2), 345–358.
Kang, Y., Spiliotis, E., Petropoulos, F., Athiniotis, N., Li, F., & Assimakopoulos, V. (2020). Déjà vu: A data-centric forecasting approach through time series cross-similarity. Journal of Business Research. https://doi.org/10.1016/j.jbusres.2020.10.051
Kapetanios, G., Mitchell, J., Price, S., & Fawcett, N. (2015). Generalised density forecast combinations. Journal of Econometrics, 188(1), 150–165. https://doi.org/https://doi.org/10.1016/j.jeconom.2015.02.047
Kargin, V., & Onatski, A. (2008). Curve forecasting by functional autoregression. Journal of Multivariate Analysis, 99(10), 2508–2526. https://doi.org/10.1016/j.jmva.2008.03.001
Karniouchina, E. V. (2011). Are virtual markets efficient predictors of new product success? The case of the hollywood stock exchange. The Journal of Product Innovation Management, 28(4), 470–484. https://doi.org/10.1111/j.1540-5885.2011.00820.x
Kascha, C., & Ravazzolo, F. (2010). Combining inflation density forecasts. Journal of Forecasting, 29(1–2), 231–250. https://doi.org/10.1002/for.1147
Katz, R. W., & Lazo, J. K. (Eds.). (2011). Economic value of weather and climate forecasts. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780195398649.013.0021
Kaufmann, R., & Juselius, K. (2013). Testing hypotheses about glacial cycles against the observational record. Paleoceanography, 28, 175–184.
Kayacan, E., Ulutas, B., & Kaynak, O. (2010). Grey system theory-based models in time series prediction. Expert Systems with Applications, 37(2), 1784–1789. https://doi.org/10.1016/j.eswa.2009.07.064
Keane, M. P., & Runkle, D. E. (1990). Testing the rationality of price forecasts: New evidence from panel data. American Economic Review, 80(4), 714–735.
Kedia, S., & Williams, C. (2003). Predictors of substance abuse treatment outcomes in Tennessee. Journal of Drug Education, 33(1), 25–47.
Kehagias, A., & Petridis, V. (1997). Time-Series Segmentation Using Predictive Modular Neural Networks. Neural Computation, 9(8), 1691–1709.
Keiding, N., & Hoem, J. M. (1976). Stochastic stable population theory with continuous time. I. Scandinavian Actuarial Journal, 1976(3), 150–175. https://doi.org/10.1080/03461238.1976.10405611
Kelle, P., & Silver, E. A. (1989). Forecasting the returns of reusable containers. Journal of Operations Management, 8(1), 17–35. https://doi.org/10.1016/S0272-6963(89)80003-8
Kelly, B., & Pruitt, S. (2013). Market expectations in the cross-section of present values. Journal of Finance, 68(5), 1721–1756.
Kennedy, R., Wojcik, S., & Lazer, D. (2017). Improving election prediction internationally. Science, 355(6324), 515–520. https://doi.org/10.1126/science.aal2887
Kennedy, W. J., Wayne Patterson, J., & Fredendall, L. D. (2002). An overview of recent literature on spare parts inventories. International Journal of Production Economics, 76(2), 201–215. https://doi.org/10.1016/S0925-5273(01)00174-8
Keyfitz, N. (1972). On future population. Journal of the American Statistical Association, 67(338), 347–363. https://doi.org/10.2307/2284381
Keyfitz, N. (1981). The limits of population forecasting. Population and Development Review, 7(4), 579–593. https://doi.org/10.2307/1972799
Khaldi, R., El Afia, A., & Chiheb, R. (2019). Forecasting of weekly patient visits to emergency department: Real case study. Procedia Computer Science, 148, 532–541.
Kiesel, R., & Paraschiv, F. (2017). Econometric analysis of 15-minute intraday electricity prices. Energy Economics, 64, 77–90.
Kilian, L., & Inoue, A. (2004). Bagging time series models (No. 110). Econometric Society; Econometric Society.
Kilian, L., & Taylor, M. P. (2003). Why is it so difficult to beat the random walk forecast of exchange rates? Journal of International Economics, 60(1), 85–107.
Kim, C.-J., Kim Chang-Jin Nelson Charles, & Nelson, C. R. (1999). State-Space models with regime switching: Classical and Gibbs-Sampling approaches with applications. MIT Press.
Kim, H. H., & Swanson, N. R. (2014). Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence. Journal of Econometrics, 178, 352–367.
Kim, S., Shephard, N., & Chib, S. (1998). Stochastic volatility: Likelihood inference and comparison with ARCH models. Review of Economic Studies, 81, 361–393.
Kim, T. Y., Dekker, R., & Heij, C. (2017). Spare part demand forecasting for consumer goods using installed base information. Computers & Industrial Engineering, 103, 201–215. https://doi.org/10.1016/j.cie.2016.11.014
King, G. (1997). A solution to the ecological inference problem: Reconstructing individual behavior from aggregate data. Princeton University Press.
King, G., Rosen, O., & Tanner, M. A. (1999). Binomial-Beta hierarchical models for ecological inference. Sociological Methods & Research, 28(1), 61–90. https://doi.org/10.1177/0049124199028001004
King, G., Tanner, M. A., & Rosen, O. (2004). Ecological inference: New methodological strategies. Cambridge University Press.
Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. San Diego: Third Annual International Conference on Learning Representations.
Kishor, N. K., & Koenig, E. F. (2012). VAR estimation and forecasting when data are subject to revision. Journal of Business & Economic Statistics, 30(2), 181–190.
Kittichotsatsawat, Y., Jangkrajarng, V., & Tippayawong, K. Y. (2021). Enhancing coffee supply chain towards sustainable growth with big data and modern agricultural technologies. Sustainability, 13(8), 4593.
Klepsch, Johannes, & Klüppelberg, C. (2017). An innovations algorithm for the prediction of functional linear processes. Journal of Multivariate Analysis, 155, 252–271.
Klepsch, J., Klüppelberg, C., & Wei, T. (2017). Prediction of functional ARMA processes with an application to traffic data. Econometrics and Statistics, 1, 128–149. Working paper.
Klima, A., Schlesinger, T., Thurner, P. W., & Küchenhoff, H. (2019). Combining aggregate data and exit polls for the estimation of voter transitions. Sociological Methods & Research, 48(2), 296–325. https://doi.org/10.1177/0049124117701477
Klima, A., Thurner, P. W., Molnar, C., Schlesinger, T., & Küchenhoff, H. (2016). Estimation of voter transitions based on ecological inference. AStA Advances in Statistical Analysis, 2, 133–159. https://doi.org/10.1007/s10182-015-0254-8
Kline, D. M. (2004). Methods for multi-step time series forecasting with neural networks. In G. P. Zhang (Ed.), Neural networks in business forecasting (pp. 226–250). Information Science Publishing.
Klofstad, C. A., & Bishin, B. G. (2012). Exit and entrance polling: A comparison of election survey methods. Field Methods, 24(4), 429–437. https://doi.org/10.1177/1525822X12449711
Knudsen, C., McNown, R., & Rogers, A. (1993). Forecasting fertility: An application of time series methods to parameterized model schedules. Social Science Research, 22(1), 1–23. https://doi.org/10.1006/ssre.1993.1001
Koenig, E. F., Dolmas, S., & Piger, J. (2003). The use and abuse of real-time data in economic forecasting. The Review of Economics and Statistics, 85(3), 618–628.
Koenker, R. (2005). Quantile regression. Cambridge University Press. https://doi.org/10.1017/CBO9780511754098
Koh, Y.-M., Spindler, R., Sandgren, M., & Jiang, J. (2018). A model comparison algorithm for increased forecast accuracy of dengue fever incidence in Singapore and the auxiliary role of total precipitation information. International Journal of Environmental Health Research, 28(5), 535–552.
Koirala, K. H., Mishra, A. K., D’Antoni, J. M., & Mehlhorn, J. E. (2015). Energy prices and agricultural commodity prices: Testing correlation using copulas method. Energy, 81, 430–436. https://doi.org/10.1016/j.energy.2014.12.055
Kok, S. de. (2017). The quest for a better forecast error metric: Measuring more than the average error. Foresight: The International Journal of Applied Forecasting, 46, 36–45.
Kokoszka, P., & Reimherr, M. (2013). Determining the order of the functional autoregressive model. Journal of Time Series Analysis, 34(1), 116–129.
Kokoszka, P., Rice, G., & Shang, H. L. (2017). Inference for the autocovariance of a functional time series under conditional heteroscedasticity. Journal of Multivariate Analysis, 162, 32–50.
Kolasa, M., & Rubaszek, M. (2015a). Forecasting using DSGE models with financial frictions. International Journal of Forecasting, 31(1), 1–19. https://doi.org/10.1016/j.ijforecast.2014
Kolasa, M., & Rubaszek, M. (2015b). How Frequently Should We Reestimate DSGE Models? International Journal of Central Banking, 11(4), 279–305.
Kolasa, M., Rubaszek, M., & Skrzypczynśki, P. (2012). Putting the New Keynesian DSGE Model to the Real-Time Forecasting Test. Journal of Money, Credit and Banking, 44(7), 1301–1324. https://doi.org/j.1538-4616.2012.00533.x
Kolassa, S. (2011). Combining exponential smoothing forecasts using Akaike weights. International Journal of Forecasting, 27(2), 238–251.
Kolassa, S. (2016). Evaluating predictive count data distributions in retail sales forecasting. International Journal of Forecasting, 32(3), 788–803. https://doi.org/https://doi.org/10.1016/j.ijforecast.2015.12.004
Kolassa, S. (2020a). Quality measure for predictive Highest Density Regions. Cross Validated. Retrieved from https://stats.stackexchange.com/q/483878
Kolassa, S. (2020b). Why the “best” point forecast depends on the error or accuracy measure. International Journal of Forecasting, 36(1), 208–211. https://doi.org/10.1016/j.ijforecast.2019.02.017
Kolassa, S. (2020c). Will deep and machine learning solve our forecasting problems? Foresight: The International Journal of Applied Forecasting, 57, 13–18.
Kolassa, S., & Siemsen, E. (2016). Demand forecasting for managers. Business Expert Press.
Kon Kam King, G., Canale, A., & Ruggiero, M. (2019). Bayesian functional forecasting with locally-autoregressive dependent processes. Bayesian Analysis, 14(4), 1121–1141.
Koning, A. J., Franses, P. H., Hibon, M., & Stekler, H. O. (2005). The M3 competition: Statistical tests of the results. International Journal of Forecasting, 21(3), 397–409. https://doi.org/10.1016/j.ijforecast.2004.10.003
Koop, G. M. (2003). Bayesian econometrics. John Wiley & Sons Inc.
Koop, Gary, & Korobilis, D. (2018). Variational Bayes inference in high-dimensional time-varying parameter models. Journal of Econometrics.
Koop, G., & Potter, S. M. (1999). Dynamic asymmetries in U.S. unemployment. Journal of Business & Economic Statistics, 17(3), 298–312.
Kostenko, A. V., & Hyndman, R. J. (2006). A note on the categorization of demand patterns. Journal of the Operational Research Society, 57(10), 1256–1257. https://doi.org/10.1057/palgrave.jors.2602211
Kotchoni, R., Leroux, M., & Stevanovic, D. (2019). Macroeconomic forecast accuracy in a data‐rich environment. Journal of Applied Econometrics, 34(7), 1050–1072. Journal Article. https://doi.org/10.1002/jae.2725
Kourentzes, N., & Athanasopoulos, G. (2019). Cross-temporal coherent forecasts for Australian tourism. Annals of Tourism Research, 75, 393–409.
Kourentzes, N., & Athanasopoulos, G. (2020). Elucidate structure in intermittent demand series. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2020.05.046
Kourentzes, N., Barrow, D., & Petropoulos, F. (2019). Another look at forecast selection and combination: Evidence from forecast pooling. International Journal of Production Economics, 209, 226–235.
Kourentzes, N., & Petropoulos, F. (2016). Forecasting with multivariate temporal aggregation: The case of promotional modelling. International Journal of Production Economics, 181, Part A, 145–153. https://doi.org/10.1016/j.ijpe.2015.09.011
Kourentzes, N., Petropoulos, F., & Trapero, J. R. (2014). Improving forecasting by estimating time series structural components across multiple frequencies. International Journal of Forecasting, 30(2), 291–302. https://doi.org/10.1016/j.ijforecast.2013.09.006
Kourentzes, N., Rostami-Tabar, B., & Barrow, D. K. (2017). Demand forecasting by temporal aggregation: Using optimal or multiple aggregation levels? Journal of Business Research, 78, 1–9. https://doi.org/10.1016/j.jbusres.2017.04.016
Kovalchik, S., & Reid, M. (2019). A calibration method with dynamic updates for within-match forecasting of wins in tennis. International Journal of Forecasting, 35(2), 756–766.
Krishnan, T. V., Bass, F. M., & Kummar, V. (2000). Impact of a late entrant on the diffusion of a new product/service. Journal of Marketing Research, 37, 269–278.
Krüger, E., & Givoni, B. (2004). Predicting thermal performance in occupied dwellings. Energy and Buildings, 36(3), 301–307.
Krzysztofowicz, R. (1999). Bayesian theory of probabilistic forecasting via deterministic hydrologic model. Water Resources Research, 35(9), 2739–2750. https://doi.org/10.1029/1999WR900099
Krzysztofowicz, R. (2014). Probabilistic flood forecast: Exact and approximate predictive distributions. Journal of Hydrology, 517, 643–651. https://doi.org/10.1016/j.jhydrol.2014.04.050
Kück, M., Crone, S. F., & Freitag, M. (2016). Meta-learning with neural networks and landmarking for forecasting model selection an empirical evaluation of different feature sets applied to industry data. In 2016 international joint conference on neural networks (IJCNN) (pp. 1499–1506). IEEE.
Kuhn, M., & Johnson, K. (2019). Feature engineering and selection. Taylor & Francis Ltd.
Kulakov, S. (2020). X-model: Further development and possible modifications. Forecasting, 2(1), 20–35.
Kulakov, S., & Ziel, F. (2021). The impact of renewable energy forecasts on intraday electricity prices. Economics of Energy and Environmental Policy, 10, 79–104.
Kulkarni, G., Kannan, P. K., & Moe, W. (2012). Using online search data to forecast new product sales. Decision Support Systems, 52(3), 604–611.
Kumar, D. (2015). Sudden changes in extreme value volatility estimator: Modeling and forecasting with economic significance analysis. Economic Modelling, 49, 354–371. https://doi.org/10.1016/j.econmod.2015.05.001
Künsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. Annals of Statistics, 17(3), 1217–1241.
Kupiszewski, M., & Kupiszewska, D. (2011). MULTIPOLES: A revised multiregional model for improved capture of international migration. In J. Stillwell & M. Clarke (Eds.), Population dynamics and projection methods (pp. 41–60). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-90-481-8930-4\_3
Kuster, C., Rezgui, Y., & Mourshed, M. (2017). Electrical load forecasting models: A critical systematic review. Sustainable Cities and Society, 35, 257–270. https://doi.org/https://doi.org/10.1016/j.scs.2017.08.009
Kusters, U., McCullough, B. D., & Bell, M. (2006). Forecasting software: Past, present and future. International Journal of Forecasting, 22(3), 599–615. https://doi.org/http://dx.doi.org/10.1016/j.ijforecast.2006.03.004
Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54(1), 159–178. https://doi.org/10.1016/0304-4076(92)90104-Y
Kyriazi, F., Thomakos, D. D., & Guerard, J. B. (2019). Adaptive learning forecasting, with applications in forecasting agricultural prices. International Journal of Forecasting, 35(4), 1356–1369. https://doi.org/10.1016/j.ijforecast.2019.03.031
L’heureux, A., Grolinger, K., Elyamany, H. F., & Capretz, M. A. (2017). Machine learning with big data: Challenges and approaches. IEEE Access, 5, 7776–7797.
La Fabrique des Mobilités. (2020). Motorway traffic in Luxembourg. Retrieved from https://www.kaggle.com/fabmob/motorway-traffic-in-luxembourg?select=datexDataA1.csv
La Scalia, G., Micale, R., Miglietta, P. P., & Toma, P. (2019). Reducing waste and ecological impacts through a sustainable and efficient management of perishable food based on the monte carlo simulation. Ecological Indicators, 97, 363–371.
Laan, E. van der, Dalen, J. van, Rohrmoser, M., & Simpson, R. (2016). Demand forecasting and order planning for humanitarian logistics: An empirical assessment. Journal of Operations Management, 45, 114–122.
Labarere, J., Bertrand, R., & Fine, M. J. (2014). How to derive and validate clinical prediction models for use in intensive care medicine. Intensive Care Medicine, 40(4), 513–527.
Ladiray, D., & Quenneville, B. (2001). Seasonal adjustment with the X-11 method. New York, USA: Springer.
Lago, J., De Ridder, F., & De Schutter, B. (2018). Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms. Applied Energy, 221, 386–405.
Lahiri, S. K., & Lahiri, N. (2003). Resampling methods for dependent data (springer series in statistics). Springer.
Lai, G., Chang, W.-C., Yang, Y., & Liu, H. (2018). Modeling long-and short-term temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference on research & development in information retrieval (pp. 95–104).
Landon, J., Ruggeri, F., Soyer, R., & Tarimcilar, M. M. (2010). Modeling latent sources in call center arrival data. European Journal of Operational Research, 204(3), 597–603.
Lanne, M., & Saikkonen, P. (2003). Modeling the U.S. Short-Term interest rate by mixture autoregressive processes. Journal of Financial Econometrics, 1(1), 96–125.
Larrick, R. P., & Soll, J. B. (2006). Intuitions about combining opinions: Misappreciation of the averaging principle. Management Science, 52(1), 111–127. https://doi.org/10.1287/mnsc.1050.0459
Larson, P. D., Simchi-Levi, D., Kaminsky, P., & Simchi-Levi, E. (2001). Designing and managing the supply chain: Concepts, strategies, and case studies. Journal of Business Logistics, 22(1), 259–261. https://doi.org/10.1002/j.2158-1592.2001.tb00165.x
Law, R., Li, G., Fong, D. K. C., & Han, X. (2019). Tourism demand forecasting: A deep learning approach. Annals of Tourism Research, 75, 410–423.
Lawrence, M. (2000). What does it take to achieve adoption in sales forecasting? International Journal of Forecasting, 16(2), 147–148.
Lawrence, M., Goodwin, P., & Fildes, R. (2002). Influence of user participation on DSS use and decision accuracy. Omega, 30(5), 381–392. https://doi.org/10.1016/S0305-0483(02)00048-8
Lawrence, M., Goodwin, P., O’Connor, M., & Önkal, D. (2006). Judgmental forecasting: A review of progress over the last 25 years. International Journal of Forecasting, 22(3), 493–518. https://doi.org/10.1016/j.ijforecast.2006.03.007
Lawrence, M., & Makridakis, S. (1989). Factors affecting judgmental forecasts and confidence intervals. Organizational Behavior and Human Decision Processes, 43(2), 172–187. https://doi.org/10.1016/0749-5978(89)90049-6
Lawrence, M., & O’Connor, M. (1992). Exploring judgemental forecasting. International Journal of Forecasting, 8(1), 15–26. https://doi.org/10.1016/0169-2070(92)90004-S
Layard, R., Nickell, S. J., & Jackman, R. (1991). Unemployment, macroeconomic performance and the labour market. Oxford: Oxford University Press.
Le, Q., & Mikolov, T. (2014). Distributed representations of sentences and documents. In International conference on machine learning (pp. 1188–1196).
Leadbetter, M. R. (1991). On a basis for “peaks over threshold” modeling. Statistics & Probability Letters, 12(4), 357–362. https://doi.org/10.1016/0167-7152(91)90107-3
Leal, T., Pérez, J. J., Tujula, M., & Vidal, J. P. (2008). Fiscal forecasting: Lessons from the literature and challenges. Fiscal Studies, 29, 347–386.
Ledolter, Johannes. (1989). The effect of additive outliers on the forecasts from ARIMA models. International Journal of Forecasting, 5(2), 231–240. https://doi.org/10.1016/0169-2070(89)90090-3
Ledolter, J. (1991). Outliers in time series analysis: Some comments on their impact and their detection. Image.
Lee, A. (1990). Airline reservations forecasting: Probabilistic and statistical models of the booking process. Cambridge, Mass.: Flight Transportation Laboratory, Dept. of Aeronautics; Astronautics, Massachusetts Institute of Technology.
Lee, C.-Y., & Huh, S.-Y. (2017a). Forecasting new and renewable energy supply through a bottom-up approach: The case of South Korea. Renewable and Sustainable Energy Reviews, 69, 207–217. https://doi.org/10.1016/j.rser.2016.11.173
Lee, C.-Y., & Huh, S.-Y. (2017b). Forecasting the diffusion of renewable electricity considering the impact of policy and oil prices: The case of South Korea. Applied Energy, 197, 29–39. https://doi.org/10.1016/j.apenergy.2017.03.124
Lee, H. L., Padmanabhan, V., & Whang, S. (2004). Information distortion in a supply chain: The bullwhip effect. Management Science, 50, 1875–1886. https://doi.org/10.1287/mnsc.1040.0266
Lee, J., Milesi-Ferretti, G. M., & Ricci, L. A. (2013). Real exchange rates and fundamentals: A cross-country perspective. Journal of Money, Credit and Banking, 45(5), 845–865.
Lee, K. L., & Billings, S. a. (2003). A new direct approach of computing multi-step ahead predictions for non-linear models. International Journal of Control, 76(8), 810–822.
Lee, R. D. (1993). Modeling and forecasting the time series of US fertility: Age distribution, range, and ultimate level. International Journal of Forecasting, 9(2), 187–202. https://doi.org/10.1016/0169-2070(93)90004-7
Lee, R. D., & Carter, L. R. (1992). Modeling and forecasting US mortality. Journal of the American Statistical Association, 87(419), 659–671.
Lee, W. Y., Goodwin, P., Fildes, R., Nikolopoulos, K., & Lawrence, M. (2007). Providing support for the use of analogies in demand forecasting tasks. International Journal of Forecasting, 23(3), 377–390. https://doi.org/10.1016/j.ijforecast.2007.02.006
Leigh, C., Alsibai, O., Hyndman, R. J., Kandanaarachchi, S., King, O. C., McGree, J. M., … Peterson, E. E. (2019). A framework for automated anomaly detection in high frequency water-quality data from in situ sensors. Science of The Total Environment, 664, 885–898.
Lemke, C., & Gabrys, B. (2010). Meta-learning for time series forecasting and forecast combination. Neurocomputing, 73(10-12), 2006–2016.
Lerch, S., Baran, S., Möller, A., Groß, J., Schefzik, R., Hemri, S., & Graeter, M. (2020). Simulation-based comparison of multivariate ensemble post-processing methods. Nonlinear Processes in Geophysics, 27(2), 349–371.
Leslie, P. H. (1945). On the use of matrices in certain population mathematics. Biometrika, 33(3), 183–212. https://doi.org/10.2307/2332297
Leslie, P. H. (1948). Some further notes on the use of matrices in population mathematics. Biometrika, 35(3/4), 213–245. https://doi.org/10.2307/2332342
Leuenberger, D., Haefele, A., Omanovic, N., Fengler, M., Martucci, G., Calpini, B., … Rossa, A. (2020). Improving high-impact numerical weather prediction with lidar and drone observations. Bulletin of the American Meteorological Society, 101(7), E1036–E1051.
Leva, S., Mussetta, M., & Ogliari, E. (2019). PV module fault diagnosis based on microconverters and Day-Ahead forecast. IEEE Transactions on Industrial Electronics, 66(5), 3928–3937. https://doi.org/10.1109/TIE.2018.2879284
Levine, R., Pickett, J., Sekhri, N., & Yadav, P. (2008). Demand forecasting for essential medical technologies. American Journal of Law & Medicine, 34(2-3), 225–255.
Lewellen, J. (2015). The cross-section of expected stock returns. Critical Finance Review, 4(1), 1–44.
Lewis, B., Herbert, R., & Bell, R. (2003). The application of fourier analysis to forecasting the inbound call time series of a call centre. In Proceedings of the international congress on modeling and simulation (MODSIM03); townsville, australia (pp. 1281–1286). Citeseer.
Lewis-Beck, M. S. (2005). Election forecasting: Principles and practice. British Journal of Politics and International Relations, 7(2), 145–164. https://doi.org/10.1111/j.1467-856X.2005.00178.x
Li, D. X. (2000). On default correlation: A copula function approach. The Journal of Fixed Income, 9(4), 43–54.
Li, D., Robinson, P. M., & Shang, H. L. (2020a). Long-range dependent curve time series. Journal of the American Statistical Association, 115(530), 957–971.
Li, D., Robinson, P. M., & Shang, H. L. (2020b). Nonstationary fractionally integrated functional time series (Working paper). University of York. https://doi.org/10.13140/RG.2.2.20579.09761
Li, D., Robinson, P. M., & Shang, H. L. (2021). Local Whittle estimation of long range dependence for functional time series. Journal of Time Series Analysis, In Press.
Li, F., & He, Z. (2019). Credit risk clustering in a business group: Which matters more, systematic or idiosyncratic risk? Cogent Economics & Finance, 1632528. https://doi.org/10.1080/23322039.2019.1632528
Li, F., & Kang, Y. (2018). Improving forecasting performance using covariate-dependent copula models. International Journal of Forecasting, 34(3), 456–476. https://doi.org/10.1016/j.ijforecast.2018.01.007
Li, G., & Jiao, E. (2020). Tourism forecasting research: A perspective article. Tourism Review. https://doi.org/10.1108/TR-09-2019-0382
Li, G., Song, H., & Witt, S. F. (2005). Recent developments in econometric modeling and forecasting. Journal of Travel Research, 44(1), 82–99. https://doi.org/10.1177/0047287505276594
Li, H., & Hong, Y. (2011). Financial volatility forecasting with range-based autoregressive volatility model. Finance Research Letters, 8(2), 69–76. https://doi.org/10.1016/j.frl.2010.12.002
Li, J. S.-H., & Chan, W.-S. (2011). Time-simultaneous prediction bands: A new look at the uncertainty involved in forecasting mortality. Insurance: Mathematics and Economics, 49(1), 81–88.
Li, Jianping, Li, G., Liu, M., Zhu, X., & Wei, L. (2020). A novel text-based framework for forecasting agricultural futures using massive online news headlines. International Journal of Forecasting. https://doi.org/10.1016/j.ijforecast.2020.02.002
Li, Jia, Liao, Z., & Quaedvlieg, R. (2020). Conditional superior predictive ability. SSRN:3536461.
Li, L., Noorian, F., Moss, D. J., & Leong, P. H. (2014). Rolling window time series prediction using MapReduce. In Proceedings of the 2014 IEEE 15th international conference on information reuse and integration (IEEE IRI 2014) (pp. 757–764). IEEE.
Li, M., Huang, L., & Gong, L. (2011). Research on the challenges and solutions of design large-scale call center intelligent scheduling system. Procedia Engineering, 15, 2359–2363.
Li, W., Han, Z., & Li, F. (2008). Clustering analysis of power load forecasting based on improved ant colony algorithm. In 2008 7th world congress on intelligent control and automation (pp. 7492–7495). https://doi.org/10.1109/WCICA.2008.4594087
Li, X., Kang, Y., & Li, F. (2020). Forecasting with time series imaging. Expert System with Applications, 160, 113680.
Liang, Y., He, D., & Chen, D. (2019). Poisoning attack on load forecasting. In 2019 IEEE innovative smart grid technologies-asia (ISGT asia) (pp. 1230–1235). IEEE.
Liberty, E., Karnin, Z., Xiang, B., Rouesnel, L., Coskun, B., Nallapati, R., … Smola, A. (2020). Elastic machine learning algorithms in Amazon SageMaker. In Proceedings of the 2020 international conference on management of data (pp. 731–737). New York, NY, USA: ACM.
Lichtendahl Jr, K. C., & Winkler, R. L. (2020). Why do some combinations perform better than others? International Journal of Forecasting, 36(1), 142–149.
Lichtendahl, K. C., Grushka-Cockayne, Y., & Winkler, R. L. (2013). Is it better to average probabilities or quantiles? Management Science, 59(7), 1594–1611. https://doi.org/10.1287/mnsc.1120.1667
Lildholdt, P. M. (2002). Estimation of GARCH models based on open, close, high, and low prices. Aarhus School of Business.
Lim, J. S., & O’Connor, M. (1996a). Judgmental forecasting with interactive forecasting support systems. Decision Support Systems, 16(4), 339–357. https://doi.org/http://dx.doi.org/10.1016/0167-9236(95)00009-7
Lim, J. S., & O’Connor, M. (1996b). Judgmental forecasting with interactive forecasting support systems. Decision Support Systems, 16(4), 339–357. https://doi.org/10.1016/0167-9236(95)00009-7
Lim, J. S., & O’Connor, M. (1996c). Judgmental forecasting with time series and causal information. International Journal of Forecasting, 12(1), 139–153. https://doi.org/10.1016/0169-2070(95)00635-4
Limaye, V. S., Vargo, J., Harkey, M., Holloway, T., & Patz, J. A. (2018). Climate change and heat-related excess mortality in the eastern USA. EcoHealth, 15(3), 485–496.
Lin, C.-F. J., & Teräsvirta, T. (1994). Testing the constancy of regression parameters against continuous structural change. Journal of Econometrics, 62(2), 211–228. https://doi.org/10.1016/0304-4076(94)90022-1
Lin, E. M. H., Chen, C. W. S., & Gerlach, R. (2012). Forecasting volatility with asymmetric smooth transition dynamic range models. International Journal of Forecasting, 28(2), 384–399. https://doi.org/10.1016/j.ijforecast.2011.09.002
Lin, J. L., & Granger, C. (1994). Forecasting from non-linear models in practice. Journal of Forecasting, 13, 1–9.
Ling, S. (1999). On the probabilistic properties of a double threshold ARMA conditional heteroskedastic model. Journal of Applied Probability, 36(3), 688–705.
Ling, S., Tong, H., & Li, D. (2007). Ergodicity and invertibility of threshold Moving-Average models. Bernoulli, 13(1), 161–168.
Linnér, L., Eriksson, I., Persson, M., & Wettermark, B. (2020). Forecasting drug utilization and expenditure: Ten years of experience in stockholm. BMC Health Services Research, 20, 1–11.
Litsiou, K., Polychronakis, Y., Karami, A., & Nikolopoulos, K. (2019). Relative performance of judgmental methods for forecasting the success of megaprojects. International Journal of Forecasting. https://doi.org/10.1016/j.ijforecast.2019.05.018
Liu, L., & Wu, L. (2021). Forecasting the renewable energy consumption of the european countries by an adjacent non-homogeneous grey model. Applied Mathematical Modelling, 89, 1932–1948. https://doi.org/10.1016/j.apm.2020.08.080
Liu, W., Zhu, F., Zhao, T., Wang, H., Lei, X., Zhong, P.-A., & Fthenakis, V. (2020). Optimal stochastic scheduling of hydropower-based compensation for combined wind and photovoltaic power outputs. Applied Energy, 276, 115501. https://doi.org/10.1016/j.apenergy.2020.115501
Liu, Y. (2005). Value-at-Risk model combination using artificial neural networks. Ermory University Working Papers.
Ljung, G. M., & Box, G. E. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2), 297–303.
Loaiza-Maya, Ruben, Martin, G. M., & Frazier, D. T. (2020). Focused Bayesian prediction. Journal of Applied Econometrics.
Loaiza-Maya, Rubén, & Smith, M. S. (2020). Real-time macroeconomic forecasting with a heteroscedastic inversion copula. Journal of Business & Economic Statistics, 38(2), 470–486.
Loaiza-Maya, Rubén, Smith, M. S., Nott, D. J., & Danaher, P. J. (2020). Fast and accurate variational inference for models with many latent variables. arXiv:2005.07430.
Locarek-Junge, H., & Prinzler, R. (1998). Estimating Value-at-Risk using neural networks. In Informationssysteme in der finanzwirtschaft (pp. 385–397). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-60327-3\_28
Logg, J. M., Minson, J. A., & Moore, D. A. (2019). Algorithm appreciation: People prefer algorithmic to human judgment. Organizational Behavior and Human Decision Processes, 151, 90–103. https://doi.org/10.1016/j.obhdp.2018.12.005
Lohmann, T., Hering, A. S., & Rebennack, S. (2016). Spatio-temporal hydro forecasting of multireservoir inflows for hydro-thermal scheduling. European Journal of Operational Research, 255(1), 243–258. https://doi.org/10.1016/j.ejor.2016.05.011
Loper, E., & Bird, S. (2002). NLTK: the natural language toolkit. arXiv:cs/0205028.
López Cabrera, B., & Schulz, F. (2016). Volatility linkages between energy and agricultural commodity prices. Energy Economics, 54(C), 190–203.
López, C., Zhong, W., & Zheng, M. (2017). Short-term electric load forecasting based on wavelet neural network, particle swarm optimization and ensemble empirical mode decomposition. Energy Procedia, 105, 3677–3682. https://doi.org/10.1016/j.egypro.2017.03.847
López, M., Valero, S., Senabre, C., Aparicio, J., & Gabaldon, A. (2012). Application of SOM neural networks to short-term load forecasting: The spanish electricity market case study. Electric Power Systems Research, 91, 18–27. https://doi.org/10.1016/j.epsr.2012.04.009
López-Ruiz, A., Bergillos, R. J., & Ortega-Sánchez, M. (2016). The importance of wave climate forecasting on the decision-making process for nearshore wave energy exploitation. Applied Energy, 182, 191–203. https://doi.org/10.1016/j.apenergy.2016.08.088
Lopez-Suarez, C. F., & Rodriguez-Lopez, J. A. (2011). Nonlinear exchange rate predictability. Journal of International Money and Finance, 30(5), 877–895.
Lothian, J. R., & Taylor, M. P. (1996). Real exchange rate behavior: The recent float from the perspective of the past two centuries. Journal of Political Economy, 104(3), 488–509.
Lotka, Alfred J. (1907). Relation between birth rates and death rates. Science, 26(653), 21–22. https://doi.org/10.1126/science.26.653.21-a
Lotka, A. J. (1920). Undamped oscillations derived from the law of mass action. Journal of the American Chemical Society, 42, 1595–99.
Lotka, Alfred James. (1925). Elements of physical biology. Williams & Wilkins.
Lovins, JB. (1968). Development of a stemming algorithm. Mechanical Translation and Computational Linguistics, 11(1-2), 22–31.
Lowe, R., Bailey, T. C., Stephenson, D. B., Graham, R. J., Coelho, C. A., Carvalho, M. S., & Barcellos, C. (2011). Spatio-temporal modelling of climate-sensitive disease risk: Towards an early warning system for dengue in Brazil. Computers & Geosciences, 37(3), 371–381.
Lu, H., Azimi, M., & Iseley, T. (2019). Short-term load forecasting of urban gas using a hybrid model based on improved fruit fly optimization algorithm and support vector machine. Energy Reports, 5, 666–677. https://doi.org/10.1016/j.egyr.2019.06.003
Lu, S.-L. (2019). Integrating heuristic time series with modified grey forecasting for renewable energy in Taiwan. Renewable Energy, 133, 1436–1444. https://doi.org/10.1016/j.renene.2018.08.092
Lu, Y. (2021). The predictive distributions of thinning-based count processes. Scandinavian Journal of Statistics, 48(1), 42–67.
Lübbers, J., & Posch, P. N. (2016). Commodities’ common factor: An empirical assessment of the markets’ drivers. Journal of Commodity Markets, 4(1), 28–40.
Lucas, A., Schwaab, B., & Zhang, X. (2014). Conditional euro area sovereign default risk. Journal of Business & Economic Statistics, 32(2), 271–284.
Lucas, R. E. (1976). Econometric policy evaluation: A critique. Carnegie-Rochester Conference Series on Public Policy, 1, 19–46. https://doi.org/https://doi.org/10.1016/S0167-2231(76)80003-6
Ludvigson, S. C., & Ng, S. (2007). The empirical risk-return relation: A factor analysis approach. Journal of Financial Economics, 83(1), 171–222.
Luo, Jian, Hong, T., & Fang, S.-C. (2018a). Benchmarking robustness of load forecasting models under data integrity attacks. International Journal of Forecasting, 34(1), 89–104.
Luo, Jian, Hong, T., & Fang, S.-C. (2018b). Robust regression models for load forecasting. IEEE Transactions on Smart Grid, 10(5), 5397–5404.
Luo, Jian, Hong, T., & Yue, M. (2018). Real-time anomaly detection for very short-term load forecasting. Journal of Modern Power Systems and Clean Energy, 6(2), 235–243.
Luo, Jiawen, Klein, T., Ji, Q., & Hou, C. (2019). Forecasting realized volatility of agricultural commodity futures with infinite Hidden Markov HAR models. International Journal of Forecasting. https://doi.org/10.1016/j.ijforecast.2019.08.007
Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27752-1
Lütkepohl, H. (2011). Forecasting nonlinear aggregates and aggregates with time-varying weights. Jahrbücher für Nationalökonomie Und Statistik, 231(1), 107–133.
Lutz, W., Butz, W. P., & Samir, K. C. (2017). World population and human capital in the twenty-first century: An overview. Oxford University Press.
Lux, T. (2008). The Markov-Switching multifractal model of asset returns. Journal of Business & Economic Statistics, 26(2), 194–210. https://doi.org/10.1198/073500107000000403
Lynn, G. S., Schnaars, S. P., & Skov, R. B. (1999). A survey of new product forecasting practices in industrial high technology and low technology businesses. Industrial Marketing Management, 28(6), 565–571. https://doi.org/10.1016/S0019-8501(98)00027-3
Ma, F., Chitta, R., Zhou, J., You, Q., Sun, T., & Gao, J. (2017). Dipole: Diagnosis prediction in healthcare via attention-based bidirectional recurrent neural networks. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1903–1911).
Ma, S. (2021). A hybrid deep meta-ensemble networks with application in electric utility industry load forecasting. Information Sciences, 544, 183–196. https://doi.org/10.1016/j.ins.2020.07.054
Ma, S., & Fildes, R. (2017). A retail store SKU promotions optimization model for category multi-period profit maximization. European Journal of Operational Research, 260(2), 680–692. https://doi.org/https://doi.org/10.1016/j.ejor.2016.12.032
Ma, S., Fildes, R., & Huang, T. (2016). Demand forecasting with high dimensional data: The case of SKU retail sales forecasting with intra-and inter-category promotional information. European Journal of Operational Research, 249(1), 245–257.
Macaulay, F. R. (1931). The smoothing of time series. NBER Books.
MacDonald, R. (1998). What determines real exchange rates? The long and the short of it. Journal of International Financial Markets, Institutions and Money, 8(2), 117–153.
MacDonald, R., & Marsh, I. W. (1994). Combining exchange rate forecasts: What is the optimal consensus measure? Journal of Forecasting, 13(3), 313–332.
Madaus, L., McDermott, P., Hacker, J., & Pullen, J. (2020). Hyper-local, efficient extreme heat projection and analysis using machine learning to augment a hybrid dynamical-statistical downscaling technique. Urban Climate, 32, 100606.
Maddix, D. C., Wang, Y., & Smola, A. (2018). Deep Factors with Gaussian Processes for Forecasting. arXiv:1812.00098.
Madhavan, P., & Wiegmann, D. A. (2007). Similarities and differences between human–human and human–automation trust: An integrative review. Theoretical Issues in Ergonomics Science, 8(4), 277–301. https://doi.org/10.1080/14639220500337708
Magdon-Ismail, M., & Atiya, A. F. (2003). A maximum likelihood approach to volatility estimation for a Brownian motion using high, low and close price data. Quantitative Finance, 3(5), 376–384.
Mahajan, V., Muller, E., & Bass, F. M. (1990). New product diffusion models in marketing: A review and directions of future research. Journal of Marketing, 54, 1–26.
Maheu, J. M., & Yang, Q. (2016). An infinite hidden Markov model for short-term interest rates. Journal of Empirical Finance, 38, 202–220. https://doi.org/10.1016/j.jempfin.2016.06.006
Maister, D. H., Galford, R., & Green, C. (2012). The trusted advisor. Simon; Schuster.
Makridakis, E. A. A., Spyros AND Spiliotis. (2018). Statistical and machine learning forecasting methods: Concerns and ways forward. PLoS One, 13(3), 1–26. https://doi.org/10.1371/journal.pone.0194889
Makridakis, S. G., Hogarth, R. M., & Gaba, A. (2010). Dance with chance: Making luck work for you. Oneworld Publications.
Makridakis, S., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., … Winkler, R. (1982). The accuracy of extrapolation (time series) methods: Results of a forecasting competition. Journal of Forecasting, 1(2), 111–153. https://doi.org/10.1002/for.3980010202
Makridakis, S., Bonneli, E., Clarke, S., Fildes, R., Gilliland, M., Hover, J., & Tashman, J. (2020). The benefits of systematic forecasting for organizations: The UFO project. Foresight: The International Journal of Applied Forecasting, 59, 45–56.
Makridakis, Spyros, Chatfield, C., Hibon, M., Lawrence, M., Mills, T., Ord, K., & Simmons, L. F. (1993). The M2-competition: A real-time judgmentally based forecasting study. International Journal of Forecasting, 9(1), 5–22. https://doi.org/10.1016/0169-2070(93)90044-N
Makridakis, Spyros, Fry, C., Petropoulos, F., & Spiliotis, E. (2021). The future of forecasting competitions: Design attributes and principles. INFORMS Journal on Data Science.
Makridakis, Spyros, & Hibon, M. (1979). Accuracy of forecasting: An empirical investigation. Journal of the Royal Statistical Society: Series A (General), 142(2), 97–125.
Makridakis, Spyros, & Hibon, M. (2000). The M3-Competition: Results, conclusions and implications. International Journal of Forecasting, 16(4), 451–476. https://doi.org/10.1016/S0169-2070(00)00057-1
Makridakis, Spyros, Hyndman, R. J., & Petropoulos, F. (2020). Forecasting in social settings: The state of the art. International Journal of Forecasting, 36(1), 15–28. https://doi.org/10.1016/j.ijforecast.2019.05.011
Makridakis, Spyros, Kirkham, R., Wakefield, A., Papadaki, M., Kirkham, J., & Long, L. (2019). Forecasting, uncertainty and risk; perspectives on clinical decision-making in preventive and curative medicine. International Journal of Forecasting, 35(2), 659–666.
Makridakis, Spyros, Spiliotis, E., & Assimakopoulos, V. (2020). The M4 competition: 100,000 time series and 61 forecasting methods. International Journal of Forecasting, 36(1), 54–74. https://doi.org/10.1016/j.ijforecast.2019.04.014
Makridakis, Spyros, Spiliotis, E., & Assimakopoulos, V. (2022). M5 accuracy competition: Results, findings and conclusions. International Journal of Forecasting. https://doi.org/https://doi.org/10.1016/j.ijforecast.2021.11.013
Makridakis, Spyros, Spiliotis, E., Assimakopoulos, V., Chen, Z., & Winkler, R. L. (2022). The M5 uncertainty competition: Results, findings and conclusions. International Journal of Forecasting. https://doi.org/https://doi.org/10.1016/j.ijforecast.2021.10.009
Makridakis, Spyros, & Winkler, R. L. (1989). Sampling distributions of post-sample forecasting errors. Journal of the Royal Statistical Society: Series C, 38(2), 331–342.
Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7, 1–15.
Mandal, P., Madhira, S. T. S., Haque, A. U., Meng, J., & Pineda, R. L. (2012). Forecasting power output of solar photovoltaic system using wavelet transform and artificial intelligence techniques. Procedia Computer Science, 12, 332–337. https://doi.org/10.1016/j.procs.2012.09.080
Mandelbrot, B. (1963). The Variation of Certain Speculative Prices. The Journal of Business, 36(4), 394. https://doi.org/10.1086/294632
Mandelbrot, B. B. (1983). The fractal geometry of nature. Henry Holt; Company.
Manders, A., Schaap, M., & Hoogerbrugge, R. (2009). Testing the capability of the chemistry transport model LOTOS-EUROS to forecast PM10 levels in the Netherlands. Atmospheric Environment, 46, 4050–4059.
Mangina, E., & Vlachos, I. P. (2005). The changing role of information technology in food and beverage logistics management: Beverage network optimisation using intelligent agent technology. Journal of Food Engineering, 70(3), 403–420.
Mankiw, N. G., & Reis, R. (2002). Sticky information versus sticky prices: A proposal to replace the New Keynesian Phillips Curve. Quarterly Journal of Economics, 117, 1295–1328.
Mankiw, N. G., Reis, R., & Wolfers, J. (2003). Disagreement about inflation expectations. Cambridge MA: National Bureau of Economic Research.
Mann, M. (2018). Have wars and violence declined? Theory and Society, 47(1), 37–60. https://doi.org/10.1007/s11186-018-9305-y
Manna, S., Biswas, S., Kundu, R., Rakshit, S., Gupta, P., & Barman, S. (2017). A statistical approach to predict flight delay using gradient boosted decision tree. In 2017 international conference on computational intelligence in data science (ICCIDS) (pp. 1–5). IEEE.
Manner, H., Türk, D., & Eichler, M. (2016). Modeling and forecasting multivariate electricity price spikes. Energy Economics, 60, 255–265. https://doi.org/10.1016/j.eneco.2016.10.006
Mannes, A. E., Larrick, R. P., & Soll, J. B. (2012). The social psychology of the wisdom of crowds. Social Judgment and Decision Making., 297, 227–242.
Mannes, A. E., Soll, J. B., & Larrick, R. P. (2014). The wisdom of select crowds. Journal of Personality and Social Psychology, 107(2), 276–299. https://doi.org/10.1037/a0036677
Manning, C., Schütze, H., & Raghavan, P. (2008). Introduction to information retrieval. Cambridge University Press.
Manski, C. F., & Molinari, F. (2010). Rounding probabilistic expectations in surveys. Journal of Business & Economic Statistics, 28:2, 219–231.
Mapa, D. (2003). A range-based GARCH model for forecasting volatility. The Philippine Review of Economics, 60(2), 73–90.
Marangon Lima, L. M., Popova, E., & Damien, P. (2014). Modeling and forecasting of Brazilian reservoir inflows via dynamic linear models. International Journal of Forecasting, 30(3), 464–476. https://doi.org/10.1016/j.ijforecast.2013.12.009
Marcellino, M., Stock, J. H., & Watson, M. W. (2006). A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series. Journal of Econometrics, 135(1-2), 499–526.
Marchetti, Cesare. (1983). The automobile in a system context: The past 80 years and the next 20 years. Technological Forecasting and Social Change, 23(1), 3–23. https://doi.org/10.1016/0040-1625(83)90068-9
Marchetti, C., & Nakicenovic, N. (1979). The dynamics of energy systems and the logistic substitution model. International Institute for Applied Systems Analysis, Laxenburg, Austria, RR-79-13, 1–71.
Marcjasz, G., Uniejewski, B., & Weron, R. (2019). On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks. International Journal of Forecasting, 35(4), 1520–1532.
Marcjasz, G., Uniejewski, B., & Weron, R. (2020). Beating the naı̈ve—combining LASSO with naı̈ve intraday electricity price forecasts. Energies, 13(7), 1667.
Marczak, M., & Proietti, T. (2016). Outlier detection in structural time series models: The indicator saturation approach. International Journal of Forecasting, 32(1), 180–202. https://doi.org/10.1016/j.ijforecast.2015.04.005
Marinakis, V., Doukas, H., Spiliotis, E., & Papastamatiou, I. (2017). Decision support for intelligent energy management in buildings using the thermal comfort model. International Journal of Computational Intelligence Systems, 10, 882–893. https://doi.org/https://doi.org/10.2991/ijcis.2017.10.1.59
Marinakis, V., Doukas, H., Tsapelas, J., Mouzakitis, S., Sicilia, Á., Madrazo, L., & Sgouridis, S. (2020). From big data to smart energy services: An application for intelligent energy management. Future Generation Computer Systems, 110, 572–586. https://doi.org/https://doi.org/10.1016/j.future.2018.04.062
Marinakis, Y., & Walsh, S. (2021). Parameter instability and structural change in s-curve-based technology diffusion forecasting. Working Paper.
Mark, L. B. van der, Wonderen, K. E. van, Mohrs, J., Aalderen, W. M. van, Riet, G. ter, & Bindels, P. J. (2014). Predicting asthma in preschool children at high risk presenting in primary care: Development of a clinical asthma prediction score. Primary Care Respiratory Journal, 23(1), 52–59.
Mark, Nelson C. (1995). Exchange rates and fundamentals: Evidence on long-horizon predictability. American Economic Review, 85(1), 201–218.
Mark, Nelson C., & Sul, D. (2001). Nominal exchange rates and monetary fundamentals: Evidence from a small post-Bretton Woods panel. Journal of International Economics, 53(1), 29–52.
Markowitz, H. (1952). Portfolio Selection. The Journal of Finance, 7(1), 77–91. https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
Marron, J. S., & Wand, M. P. (1992). Exact mean integrated squared error. Annals of Statistics, 20(2), 712–736.
Martin, G. M., Frazier, D. T., & Robert, C. P. (2020). Computing Bayes: Bayesian computation from 1763 to the 21st century. arXiv:2004.06425.
Martinez, A. B., Castle, J. L., & Hendry, D. F. (2021). Smooth robust multi-horizon forecasts. Advances in Econometrics, Forthcoming.
Martinez Alvarez, F., Troncoso, A., Riquelme, J. C., & Aguilar Ruiz, J. S. (2011). Energy time series forecasting based on pattern sequence similarity. IEEE Transactions on Knowledge and Data Engineering, 23(8), 1230–1243. https://doi.org/10.1109/TKDE.2010.227
Martinez, E. Z., & Silva, E. A. S. da. (2011). Predicting the number of cases of dengue infection in Ribeirão Preto, São Paulo State, Brazil, using a SARIMA model. Cadernos de Saude Publica, 27, 1809–1818.
Martinez, R., & Sanchez, M. (1970). Automatic booking level control. In AGIFORS symposium proc (Vol. 10).
Martı́nez–Álvarez, F., Troncoso, A., Riquelme, J. C., & Aguilar–Ruiz, J. S. (2011). Discovery of motifs to forecast outlier occurrence in time series. Pattern Recognition Letters, 32(12), 1652–1665. https://doi.org/10.1016/j.patrec.2011.05.002
Masarotto, G. (1990). Bootstrap prediction intervals for autoregressions. International Journal of Forecasting, 6(2), 229–239.
Mat Daut, M. A., Hassan, M. Y., Abdullah, H., Rahman, H. A., Abdullah, M. P., & Hussin, F. (2017). Building electrical energy consumption forecasting analysis using conventional and artificial intelligence methods: A review. Renewable and Sustainable Energy Reviews, 70, 1108–1118. https://doi.org/https://doi.org/10.1016/j.rser.2016.12.015
Matte, T. D., Lane, K., & Ito, K. (2016). Excess mortality attributable to extreme heat in New York City, 1997-2013. Health Security, 14(2), 64–70.
Maymin, P. Z. (2019). Wage against the machine: A generalized deep-learning market test of dataset value. International Journal of Forecasting, 35(2), 776–782.
McAlinn, K., Aastveit, K. A., Nakajima, J., & West, M. (2020). Multivariate Bayesian predictive synthesis in macroeconomic forecasting. Journal of the American Statistical Association, 115(531), 1092–1110.
McAlinn, K., & West, M. (2019). Dynamic Bayesian predictive synthesis in time series forecasting. Journal of Econometrics, 210(1), 155–169. https://doi.org/https://doi.org/10.1016/j.jeconom.2018.11.010
McCabe, B. P. M., & Martin, G. M. (2005). Bayesian predictions of low count time series. International Journal of Forecasting, 21(2), 315–330.
McCabe, B. P. M., Martin, G. M., & Harris, D. (2011). Efficient probabilistic forecasts for counts. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(2), 253–272.
McCarthy, C., & Ryan, T. M. (1977). Estimates of voter transition probabilities from the British general elections of 1974. Journal of the Royal Statistical Society, Series A, 140(1), 78–85. https://doi.org/10.2307/2344518
McCoy, T. H., Pellegrini, A. M., & Perlis, R. H. (2018). Assessment of time-series machine learning methods for forecasting hospital discharge volume. JAMA Network Open, 1(7), e184087–e184087.
McFadden, D. (1977). Modelling the choice of residential location (No. 477). Cowles Foundation for Research in Economics, Yale University; Cowles Foundation for Research in Economics, Yale University.
McGill, J., & Van Ryzin, G. (1999). Revenue management: Research overview and prospects. Transportation Science, 33(2), 233–256.
McLean, R. D., & Pontiff, J. (2016). Does academic research destroy return predictability? Journal of Finance, 71(1), 5–32.
McNames, J. (1998). A nearest trajectory strategy for time series prediction. In Proceedings of the international workshop on advanced Black-Box techniques for nonlinear modeling (pp. 112–128). Citeseer.
McNees, S. K. (1990). The role of judgment in macroeconomic forecasting accuracy. International Journal of Forecasting, 6(3), 287–299. https://doi.org/10.1016/0169-2070(90)90056-H
McNeil, A. J., Frey, R., & Embrechts, P. (2015). Quantitative risk management: Concepts, techniques and tools - revised edition. Princeton University Press.
Meade, Nigel. (1984). The use of growth curves in forecasting market development - a review and appraisal. Journal of Forecasting, 3(4), 429–451. https://doi.org/10.1002/for.3980030406
Meade, Nigel. (2000). Evidence for the selection of forecasting methods. Journal of Forecasting, 19(6), 515–535.
Meade, Nigel, & Islam, T. (2001). Forecasting the diffusion of innovations: Implications for Time-Series extrapolation. In J. Scott Armstrong (Ed.), Principles of forecasting: A handbook for researchers and practitioners (pp. 577–595). Boston, MA: Springer US. https://doi.org/10.1007/978-0-306-47630-3\_26
Meade, N., & Islam, T. (2006). Modelling and forecasting the diffusion of innovation – a 25-year review. International Journal of Forecasting, 22, 519–545.
Meade, Nigel, & Islam, T. (2015a). Forecasting in telecommunications and ICT - a review. International Journal of Forecasting, 31(4), 1105–1126.
Meade, Nigel, & Islam, T. (2015b). Modelling european usage of renewable energy technologies for electricity generation. Technological Forecasting and Social Change, 90, 497–509. https://doi.org/10.1016/j.techfore.2014.03.007
Meehl, P. (2013). Clinical versus statistical prediction: A theoretical analysis and a review of the evidence. Echo Point Books & Media.
Meeran, S., Dyussekeneva, K., & Goodwin, P. (2013). Sales forecasting using a combination of diffusion model and forecast market: An adaptation of prediction/preference markets. In Proceedings of the 7th IFAC conference on manufacturing modelling, management, and control (pp. 87–92). St. Petersburg.
Meeran, Sheik, Jahanbin, S., Goodwin, P., & Quariguasi Frota Neto, J. (2017). When do changes in consumer preferences make forecasts from choice-based conjoint models unreliable? European Journal of Operational Research, 258(2), 512–524. https://doi.org/10.1016/j.ejor.2016.08.047
Meese, R. A., & Rogoff, K. (1983). Empirical exchange rate models of the seventies: Do they fit out of sample? Journal of International Economics, 14(1-2), 3–24.
Meinshausen, N. (2006). Quantile regression forests. Journal of Machine Learning Research, 7, 983–999.
Meira, E., Cyrino Oliveira, F. L., & Jeon, J. (2020). Treating and pruning: New approaches to forecasting model selection and combination using prediction intervals. International Journal of Forecasting.
Melacini, M., Perotti, S., Rasini, M., & Tappia, E. (2018). E-fulfilment and distribution in omni-channel retailing: A systematic literature review. International Journal of Physical Distribution & Logistics Management, 48(4), 391–414.
Mellit, A., Massi Pavan, A., Ogliari, E., Leva, S., & Lughi, V. (2020). Advanced methods for photovoltaic output power forecasting: A review. Applied Sciences, 10(2), 487. https://doi.org/10.3390/app10020487
Mello, J. (2009). The impact of sales forecast game playing on supply chains. Foresight: The International Journal of Applied Forecasting, 13, 13–22.
Mello, J. (2010). Corporate culture and S&OP: Why culture counts. Foresight: The International Journal of Applied Forecasting, 16, 46–49.
Mena-Oreja, J., & Gozalvez, J. (2020). A comprehensive evaluation of deep learning-based techniques for traffic prediction. IEEE Access, 8, 91188–91212.
Meng, Xiangrui, Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., … Talwalkar, A. (2016). MLlib: Machine Learning in Apache Spark. The Journal of Machine Learning Research, 17(1), 1235–1241.
Meng, Xiaochun, & Taylor, J. W. (2020). Estimating Value-at-Risk and Expected Shortfall using the intraday low and range data. European Journal of Operational Research, 280(1), 191–202. https://doi.org/10.1016/j.ejor.2019.07.011
Meng, Xiaochun, Taylor, J. W., Ben Taieb, S., & Li, S. (2020). Scoring functions for multivariate distributions and level sets. arXiv:2002.09578.
Merkle, E. C., & Steyvers, M. (2013). Choosing a strictly proper scoring rule. Decision Analysis, 10(4), 292–304. https://doi.org/10.1287/deca.2013.0280
Merrick, J. R. W., Hardin, J. R., & Walker, R. (2006). Partnerships in training. INFORMS Journal on Applied Analytics, 36(4), 359–370. https://doi.org/10.1287/inte.1060.0202
Merrow, E. W., McDonnell, L. M., & Arguden, R. Y. (1988). Understanding the outcomes of Mega-Projects. RAND Corporation.
Messner, J. W., & Pinson, P. (2018). Online adaptive lasso estimation in vector autoregressive models for high dimensional wind power forecasting. International Journal of Forecasting. https://doi.org/10.1016/j.ijforecast.2018.02.001
Mestre, G., Portela, J., San Roque, A. M., & Alonso, E. (2020). Forecasting hourly supply curves in the italian day-ahead electricity market with a double-seasonal SARMAHX model. International Journal of Electrical Power & Energy Systems, 121, 106083.
Miao, D. W. C., Wu, C. C., & Su, Y. K. (2013). Regime-switching in volatility and correlation structure using range-based models with Markov-switching. Economic Modelling, 31(1), 87–93. https://doi.org/10.1016/j.econmod.2012.11.013
Miao, H., Ramchander, S., Wang, T., & Yang, D. (2017). Influential factors in crude oil price forecasting. Energy Economics, 68, 77–88.
Mikkelsen, L., Moesgaard, K., Hegnauer, M., & Lopez, A. D. (2020). ANACONDA: A new tool to improve mortality and cause of death data. BMC Medicine, 18(1), 1–13.
Milankovitch, M. (1969). Canon of insolation and the ice-age problem. Washington, D.C: National Science Foundation.
Milas, C., & Rothman, P. (2008). Out-of-sample forecasting of unemployment rates with pooled STVECM forecasts. International Journal of Forecasting, 24(1), 101–121.
Millán–Ruiz, D., & Hidalgo, J. I. (2013). Forecasting call centre arrivals. Journal of Forecasting, 32(7), 628–638.
Miller, R., & Lessard, D. (2007). Evolving strategy: Risk management and the shaping of large engineering projects (No. 37157). Massachusetts Institute of Technology; MIT Sloan School of Management.
Min, A., & Czado, C. (2011). Bayesian model selection for D-vine pair-copula constructions. Canadian Journal of Statistics, 39(2), 239–258. https://doi.org/10.1002/cjs
Min, C., & Zellner, A. (1993). Bayesian and non-Bayesian methods for combining models and forecasts with applications to forecasting international growth rates. Journal of Econometrics, 56(1-2), 89–118.
Mincer, J., & Zarnowitz, V. (1969). The evaluation of economic forecasts. In J. Mincer (Ed.), Economic forecasts and expectations: Analysis of forecasting behavior and performance (pp. 3–46). National Bureau of Economic Research, Inc.
Mingming, T., & Jinliang, Z. (2012). A multiple adaptive wavelet recurrent neural network model to analyze crude oil prices. Journal of Economics and Business, 64(4), 275–286.
Mirakyan, A., Meyer-Renschhausen, M., & Koch, A. (2017). Composite forecasting approach, application for next-day electricity price forecasting. Energy Economics, 66, 228–237.
Mircetica, D., Rostami-Tabar, B., Nikolicica, S., & Maslarica, M. (2020). Forecasting hierarchical time series in supply chains: An empirical investigation. Cardiff University.
Mirko, K., & Kantelhardt, J. W. (2013). Hadoop. TS: Large-scale time-series processing. International Journal of Computer Applications, 74(17).
Mirmirani, S., & Li, H. C. (2004). A comparison of VAR and neural networks with genetic algorithm in forecasting price of oil. Advances in Econometrics, 19, 203–223.
Mišić, S., & Radujković, M. (2015). Critical drivers of megaprojects success and failure. Procedia Engineering, 122, 71–80. https://doi.org/10.1016/j.proeng.2015.10.009
Mitchell, T. J., & Beauchamp, J. J. (1988). Bayesian variable selection in linear regression. Journal of the American Statistical Association, 83(404), 1023–1032.
Mitofsky, W. (1991). A short history of exit polls. In P. J. Lavrakas & J. K. Holley (Eds.), Polling and presidential election coverage (pp. 83–99). Newbury Park, CA: Sage.
Modis, T. (1992). Predictions: Society’s telltale signature reveals the past and forecasts the future. Simon & Schuster.
Modis, T. (1994). Fractal aspects of natural growth. Technological Forecasting and Social Change, 47(1), 63–73. https://doi.org/10.1016/0040-1625(94)90040-X
Modis, T. (1997). Genetic re-engineering of corporations. Technological Forecasting and Social Change, 56(2), 107–118. https://doi.org/10.1016/S0040-1625(97)00076-0
Modis, T. (1998). Conquering uncertainty: Understanding corporate cycles and positioning your company to survive the changing environment. McGraw-Hill.
Modis, T. (2007). The normal, the natural, and the harmonic. Technological Forecasting and Social Change, 74(3), 391–399. https://doi.org/10.1016/j.techfore.2006.07.003
Modis, T. (2013a). Long-term GDP forecasts and the prospects for growth. Technological Forecasting and Social Change, 80(8), 1557–1562.
Modis, T. (2013b). Natural laws in the service of the decision maker: How to use Science-Based methodologies to see more clearly further into the future. Growth Dynamics.
Modis, T. (2022). Links between entropy, complexity, and the technological singularity. Technological Forecasting and Social Change, 176, 121457.
Modis, T., & Debecker, A. (1992). Chaoslike states can be expected before and after logistic growth. Technological Forecasting and Social Change, 41(2), 111–120. https://doi.org/10.1016/0040-1625(92)90058-2
Moghaddam, A. H., Moghaddam, M. H., & Esfandyari, M. (2016). Stock market index prediction using artificial neural network. Journal of Economics, Finance and Administrative Science, 21(41), 89–93. https://doi.org/https://doi.org/10.1016/j.jefas.2016.07.002
Mohammadi, H., & Su, L. (2010). International evidence on crude oil price dynamics: Applications of ARIMA-GARCH models. Energy Economics, 32(5), 1001–1008.
Mohandes, S. R., Zhang, X., & Mahdiyar, A. (2019). A comprehensive review on the application of artificial neural networks in building energy analysis. Neurocomputing, 340, 55–75. https://doi.org/https://doi.org/10.1016/j.neucom.2019.02.040
Molenaers, A., Baets, H., Pintelon, L., & Waeyenbergh, G. (2012). Criticality classification of spare parts: A case study. International Journal of Production Economics, 140(2), 570–578. https://doi.org/10.1016/j.ijpe.2011.08.013
Möller, A., Lenkoski, A., & Thorarinsdottir, T. L. (2013). Multivariate probabilistic forecasting using ensemble Bayesian model averaging and copulas. Quarterly Journal of the Royal Meteorological Society, 139(673), 982–991.
Molnár, P. (2016). High-low range in GARCH models of stock return volatility. Applied Economics, 48(51), 4977–4991. https://doi.org/10.1080/00036846.2016.1170929
Molodtsova, T., & Papell, D. H. (2009). Out-of-sample exchange rate predictability with Taylor rule fundamentals. Journal of International Economics, 77(2), 167–180.
Monsell, B., Aston, J., & Koopman, S. (2003). Toward X-13? In Proceedings of the American Statistical Association, Section on Business and Economic Statistics (pp. 1–8). U.S. Census Bureau.
Montero Jimenez, J. J., Schwartz, S., Vingerhoeds, R., Grabot, B., & Salaün, M. (2020). Towards multi-model approaches to predictive maintenance: A systematic literature survey on diagnostics and prognostics. Journal of Manufacturing Systems, 56, 539–557. https://doi.org/10.1016/j.jmsy.2020.07.008
Montero-Manso, P., Athanasopoulos, G., Hyndman, R. J., & Talagala, T. S. (2020). FFORMA: Feature-based forecast model averaging. International Journal of Forecasting, 36(1), 86–92. https://doi.org/10.1016/j.ijforecast.2019.02.011
Montero-Manso, P., & Hyndman, R. J. (2020). Principles and algorithms for forecasting groups of time series: Locality and globality. arXiv:2008.00444.
Montgomery, A. L., Zarnowitz, V., Tsay, R. S., & Tiao, G. C. (1998). Forecasting the U.S. Unemployment rate. Journal of the American Statistical Association, 93, 478–493.
Moon, M. A., Mentzer, J. T., & Smith, C. D. (2003). Conducting a sales forecasting audit. International Journal of Forecasting, 19(1), 5–25. https://doi.org/10.1016/S0169-2070(02)00032-8
Moon, S., Simpson, A., & Hicks, C. (2013). The development of a classification model for predicting the performance of forecasting methods for naval spare parts demand. International Journal of Production Economics, 143(2), 449–454. https://doi.org/10.1016/j.ijpe.2012.02.016
Moonchai, S., & Chutsagulprom, N. (2020). Short-term forecasting of renewable energy consumption: Augmentation of a modified grey model with a Kalman filter. Applied Soft Computing, 87, 105994. https://doi.org/10.1016/j.asoc.2019.105994
Mori, H., & Yuihara, A. (2001). Deterministic annealing clustering for ANN-based short-term load forecasting. IEEE Transactions on Power Systems, 16(3), 545–551. https://doi.org/10.1109/59.932293
Morlidge, S. (2014a). Do forecasting methods reduce avoidable error? Evidence from forecasting competitions. Foresight: The International Journal of Applied Forecasting, 32, 34–39.
Morlidge, S. (2014b). Forecast quality in the supply chain. Foresight: The International Journal of Applied Forecasting, 33, 26–31.
Morlidge, S. (2014c). Using relative error metrics to improve forecast quality in the supply chain. Foresight: The International Journal of Applied Forecasting, 34, 39–46.
Morris, S. A., & Pratt, D. (2003). Analysis of the lotka–volterra competition equations as a technological substitution model. Technological Forecasting and Social Change, 77, 103–133.
Morss, R. E., Demuth, J. L., & Lazo, J. K. (2008). Communicating uncertainty in weather forecasts: A survey of the US public. Weather and Forecasting, 23(5), 974–991. https://doi.org/10.1175/2008WAF2007088.1
Morwitz, V. (1997). Why consumers don’t always accurately predict their own future behavior. Marketing Letters, 8(1), 57–70. https://doi.org/10.1023/A:1007937327719
Moshman, J. (1964). The role of computers in election night broadcasting. In F. L. Alt & M. Rubinoff (Eds.), Advances in computers (Vol. 5, pp. 1–21). Elsevier. https://doi.org/10.1016/S0065-2458(08)60351-4
Moultrie, T., Dorrington, R., Hill, A., Hill, K., Timæus, I., & Zaba, B. (2013). Tools for demographic estimation. Paris: International Union for the Scientific Study of Population.
Mount, T. D., Ning, Y., & Cai, X. (2006). Predicting price spikes in electricity markets using a regime-switching model with time-varying parameters. Energy Economics, 28(1), 62–80. https://doi.org/10.1016/j.eneco.2005.09.008
Mueller, J. (2009a). Retreat from doomsday: The obsolescence of major war. Zip Publishing.
Mueller, J. (2009b). War has almost ceased to exist: An assessment. Political Science Quarterly, 124(2), 297–321. https://doi.org/10.1002/j.1538-165X.2009.tb00650.x
Mukhopadhyay, S., & Sathish, V. (2019). Predictive likelihood for coherent forecasting of count time series. Journal of Forecasting, 38(3), 222–235.
Mulholland, J., & Jensen, S. T. (2019). Optimizing the allocation of funds of an NFL team under the salary cap. International Journal of Forecasting, 35(2), 767–775.
Muniain, P., & Ziel, F. (2020). Probabilistic forecasting in day-ahead electricity markets: Simulating peak and off-peak prices. International Journal of Forecasting, 36(4), 1193–1210. https://doi.org/10.1016/j.ijforecast.2019.11.006
Murphy, A. H. (1993). What is a good forecast? An essay on the nature of goodness in weather forecasting. Weather and Forecasting, 8(2), 281–293.
Muth, J. F. (1961). Rational expectations and the theory of price movements. Econometrica, 29, 315–335.
Myrskylä, M., Goldstein, J. R., & Cheng, Y.-H. A. (2013). New cohort fertility forecasts for the developed world: Rises, falls, and reversals. Population and Development Review, 39(1), 31–56. https://doi.org/10.1111/j.1728-4457.2013.00572.x
Nagi, J., Yap, K. S., Nagi, F., Tiong, S. K., & Ahmed, S. K. (2011). A computational intelligence scheme for the prediction of the daily peak load. Applied Soft Computing, 11(8), 4773–4788. https://doi.org/10.1016/j.asoc.2011.07.005
Naish, S., Dale, P., Mackenzie, J. S., McBride, J., Mengersen, K., & Tong, S. (2014). Climate change and dengue: A critical and systematic review of quantitative modelling approaches. BMC Infectious Diseases, 14(1), 1–14.
Nanopoulos, A., Alcock, R., & Manolopoulos, Y. (2001). Feature-based classification of time-series data. In Information processing and technology (pp. 49–61). USA: Nova Science Publishers, Inc.
Napierała, J., Hilton, J., Forster, J. J., Carammia, M., & Bijak, J. (2021). Towards an early warning system for monitoring asylum-related migration flows in Europe. International Migration Review, in press.
Narajewski, M., & Ziel, F. (2020a). Econometric modelling and forecasting of intraday electricity prices. Journal of Commodity Markets, 19, 100107.
Narajewski, M., & Ziel, F. (2020b). Ensemble forecasting for intraday electricity prices: Simulating trajectories. Applied Energy, 279, 115801.
National Research Council. (2000). Beyond six billion: Forecasting the world’s population. National Academies Press.
National Research Council. (2006). Completing the forecast: Characterizing and communicating uncertainty for better decisions using weather and climate forecasts. National Academies Press.
Neal, P., & Kypraios, T. (2015). Exact Bayesian inference via data augmentation. Statistics and Computing, 25, 333–347.
Neale, W. C. (1964). The Peculiar Economics of Professional Sports. Quarterly Journal of Economics, 78(1), 1–14.
Nelsen, R. B. (2006). An introduction to copulas. Springer Verlag.
Nelson, C. R., & Plosser, C. R. (1982). Trends and random walks in macroeconomic time series: Some evidence and implications. Journal of Monetary Economics, 10(2), 139–162. https://doi.org/10.1016/0304-3932(82)90012-5
Nelson, D. B. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica, 59(2), 347. https://doi.org/10.2307/2938260
Nespoli, A., Ogliari, E., Leva, S., Massi Pavan, A., Mellit, A., Lughi, V., & Dolara, A. (2019). Day-Ahead photovoltaic forecasting: A comparison of the most effective techniques. Energies, 12(9), 1621. https://doi.org/10.3390/en12091621
Neves, M. M., & Cordeiro, C. (2020). Modellling (and forecasting) extremes in time series: A naive approach. In Atas do XXIII congresso da SPE (pp. 189–202). Sociedade Portuguesa de Estatística.
Newbold, P., & Granger, C. W. (1974). Experience with forecasting univariate time series and the combination of forecasts. Journal of the Royal Statistical Society: Series A (General), 137(2), 131–146.
Ng, Y. S., Stein, J., Ning, M., & Black-Schaffer, R. M. (2007). Comparison of clinical characteristics and functional outcomes of ischemic stroke in different vascular territories. Stroke, 38(8), 2309–2314.
Nicola, F. de, De Pace, P., & Hernandez, M. A. (2016). Co-movement of major energy, agricultural, and food commodity price returns: A time-series assessment. Energy Economics, 57(C), 28–41.
Nicol-Harper, A., Dooley, C., Packman, D., Mueller, M., Bijak, J., Hodgson, D., … Ezard, T. (2018). Inferring transient dynamics of human populations from matrix non-normality. Population Ecology, 60(1), 185–196. https://doi.org/10.1007/s10144-018-0620-y
Nielsen, J., Mazick, A., Andrews, N., Detsis, M., Fenech, T., Flores, V., … Molbak, K. (2013). Pooling European all-cause mortality: Methodology and findings for the seasons 2008/2009 to 2010/2011. Epidemiology & Infection, 141(9), 1996–2010.
Nielsen, M., Seo, W., & Seong, D. (2019). Inference on the dimension of the nonstationary subspace in functional time series (Working Paper No. 1420). Queen’s Economics Department.
Nikolopoulos, Konstantinos. (2020). We need to talk about intermittent demand forecasting. European Journal of Operational Research.
Nikolopoulos, Konstantinos I., Babai, M. Z., & Bozos, K. (2016). Forecasting supply chain sporadic demand with nearest neighbor approaches. International Journal of Production Economics, 177, 139–148. https://doi.org/10.1016/j.ijpe.2016.04.013
Nikolopoulos, Kostas I., & Thomakos, D. D. (2019). Forecasting with the theta method: Theory and applications. John Wiley & Sons.
Nikolopoulos, Konstantinos, Assimakopoulos, V., Bougioukos, N., Litsa, A., & Petropoulos, F. (2012). The theta model: An essential forecasting tool for supply chain planning. In Advances in automation and robotics, vol. 2 (pp. 431–437). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-25646-2\_56
Nikolopoulos, K., Goodwin, P., Patelis, A., & Assimakopoulos, V. (2007). Forecasting with cue information: A comparison of multiple regression with alternative forecasting approaches. European Journal of Operational Research, 180(1), 354–368. https://doi.org/10.1016/j.ejor.2006.03.047
Nikolopoulos, Konstantinos, Litsa, A., Petropoulos, F., Bougioukos, V., & Khammash, M. (2015). Relative performance of methods for forecasting special events. Journal of Business Research, 68(8), 1785–1791. https://doi.org/10.1016/j.jbusres.2015.03.037
Nikolopoulos, Konstantinos, & Petropoulos, F. (2018). Forecasting for big data: Does suboptimality matter? Computers & Operations Research, 98, 322–329. https://doi.org/https://doi.org/10.1016/j.cor.2017.05.007
Nikolopoulos, Konstantinos, Punia, S., Schäfers, A., Tsinopoulos, C., & Vasilakis, C. (2020). Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2020.08.001
Nikolopoulos, Konstantinos, Syntetos, A. A., Boylan, J. E., Petropoulos, F., & Assimakopoulos, V. (2011). An aggregate - disaggregate intermittent demand approach (ADIDA) to forecasting: An empirical proposition and analysis. The Journal of the Operational Research Society, 62(3), 544–554.
Nogueira, P. J., Araújo Nobre, M. de, Nicola, P. J., Furtado, C., & Carneiro, A. V. (2020). Excess mortality estimation during the COVID-19 pandemic: Preliminary data from Portugal. Acta Médica Portuguesa, 33(13).
Nordhaus, W. D. (1987). Forecasting Efficiency: Concepts and Applications. The Review of Economics and Statistics, 69(4), 667–674.
Norton-Taylor, R. (2015). Global armed conflicts becoming more deadly, major study finds. http://www.theguardian.com/world/2015/may/20/.
Nowotarski, J., & Weron, R. (2018). Recent advances in electricity price forecasting: A review of probabilistic forecasting. Renewable and Sustainable Energy Reviews, 81, 1548–1568.
Nsoesie, E., Mararthe, M., & Brownstein, J. (2013). Forecasting peaks of seasonal influenza epidemics. PLoS Currents, 5. https://doi.org/10.1371/currents.outbreaks.bb1e879a23137022ea79a8c508b030bc
Nunes, B., Viboud, C., Machado, A., Ringholz, C., Rebelo-de-Andrade, H., Nogueira, P., & Miller, M. (2011). Excess mortality associated with influenza epidemics in Portugal, 1980 to 2004. PloS One, 6(6), e20661.
Nye, J. S. (1990). The changing nature of world power. Political Science Quarterly, 105(2), 177–192. https://doi.org/10.2307/2151022
Nymoen, R., & Sparrman, V. (2015). Equilibrium unemployment dynamics in a panel of OECD countries. Oxford Bulletin of Economics and Statistics, 77(2), 164–190.
Nystrup, P., Lindström, E., Pinson, P., & Madsen, H. (2020). Temporal hierarchies with autocorrelation for load forecasting. European Journal of Operational Research, 280(3), 876–888. https://doi.org/10.1016/j.ejor.2019.07.061
O’Connor, M., Remus, W., & Griggs, K. (1993). Judgemental forecasting in times of change. International Journal of Forecasting, 9(2), 163–172. https://doi.org/10.1016/0169-2070(93)90002-5
O’Hagan, Anthony, Buck, C. E., Daneshkhah, A., Richard Eiser, J., Garthwaite, P. H., Jenkinson, D. J., … Rakow, T. (2006). Uncertain judgements: Eliciting experts’ probabilities. Wiley.
O’Hagan, A., & Forster, J. (2004). Kendall’s advanced theory of statistics: Bayesian inference, second edition (Vol. 2B). Arnold.
O’Hagan, A., & West, M. (2010). The oxford handbook of applied Bayesian analysis. OUP.
O’Hara-Wild, M., & Hyndman, R. (2020). Fasster: Fast additive switching of seasonality, trend and exogenous regressors.
OBR. (2019). Long-term economic determinants ({OBR} {S}upplementary {F}orecast {I}nformation {R}elease). London: Office for Budget Responsibility.
Obst, D., Ghattas, B., Claudel, S., Cugliari, J., Goude, Y., & Oppenheim, G. (2019). Textual data for time series forecasting. arXiv:1910.12618.
Office for National Statistics. (2019). U.K. National accounts, the blue book: 2019. Office for National Statistics.
Ogata, Yoshiko. (1978). The asymptotic behaviour of maximum likelihood estimators for stationary point processes. Annals of the Institute of Statistical Mathematics, 30(2), 243–261. https://doi.org/10.1007/BF02480216
Ogata, Yosihiko. (1988). Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical Association, 83(401), 9–27. https://doi.org/10.1080/01621459.1988.10478560
Ogliari, E., Dolara, A., Manzolini, G., & Leva, S. (2017). Physical and hybrid methods comparison for the day ahead PV output power forecast. Renewable Energy, 113, 11–21. https://doi.org/10.1016/j.renene.2017.05.063
Ogliari, E., Niccolai, A., Leva, S., & Zich, R. E. (2018). Computational intelligence techniques applied to the day ahead PV output power forecast: PHANN, SNO and mixed. Energies, 11(6), 1487. https://doi.org/10.3390/en11061487
Oh, D. H., & Patton, A. J. (2016). High-dimensional copula-based distributions with mixed frequency data. Journal of Econometrics, 193(2), 349–366.
Oh, D. H., & Patton, A. J. (2018). Time-varying systemic risk: Evidence from a dynamic copula model of cds spreads. Journal of Business & Economic Statistics, 36(2), 181–195.
Oh, H., & Yoon, C. (2020). Time to build and the real-options channel of residential investment. Journal of Financial Economics, 135(1), 255–269.
Ojo, O. O., Shah, S., Coutroubis, A., Jiménez, M. T., & Ocana, Y. M. (2018). Potential impact of industry 4.0 in sustainable food supply chain environment. In 2018 IEEE international conference on technology management, operations and decisions (ICTMOD) (pp. 172–177). IEEE.
Oksuz, I., & Ugurlu, U. (2019). Neural network based model comparison for intraday electricity price forecasting. Energies, 12(23), 4557.
Okun, A. M. (1962). Potential GNP: Its measurement and significance. American Statistical Association, Proceedings of the Business and Economics Statistics Section, 98–104.
Oliva, R., & Watson, N. (2009). Managing functional biases in organizational forecasts: A case study of consensus forecasting in supply chain planning. International Journal of Operations & Production Management, 18(2), 138–151. https://doi.org/10.1111/j.1937-5956.2009.01003.x
Oliveira, E. M. de, & Cyrino Oliveira, F. L. (2018). Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods. Energy, 144, 776–788. https://doi.org/10.1016/j.energy.2017.12.049
Oliveira, F. L. C., Souza, R. C., & Marcato, A. L. M. (2015). A time series model for building scenarios trees applied to stochastic optimisation. International Journal of Electrical Power & Energy Systems, 67, 315–323. https://doi.org/10.1016/j.ijepes.2014.11.031
Oliveira, J. M., & Ramos, P. (2019). Assessing the performance of hierarchical forecasting methods on the retail sector. Entropy, 21(4). https://doi.org/https://doi.org/10.3390/e21040436
Omar, H., Klibi, W., Babai, M. Z., & Ducq, Y. (2021). Basket data-driven approach for omnichannel demand forecasting.
Önkal, D., & Gönül, M. S. (2005). Judgmental adjustment: A challenge for providers and users of forecasts. Foresight: The International Journal of Applied Forecasting, 1, 13–17.
Önkal, D., Gönül, M. S., & De Baets, S. (2019). Trusting forecasts. Futures & Foresight Science, 1, e19. https://doi.org/10.1002/ffo2.19
Önkal, D., Gönül, M. S., Goodwin, P., Thomson, M., & Öz, E. (2017). Evaluating expert advice in forecasting: Users’ reactions to presumed vs. Experienced credibility. International Journal of Forecasting, 33(1), 280–297. https://doi.org/10.1016/j.ijforecast.2015.12.009
Önkal, D., Gönül, M. S., & Lawrence, M. (2008). Judgmental adjustments of previously adjusted forecasts. Decision Sciences, 39(2), 213–238. https://doi.org/10.1111/j.1540-5915.2008.00190.x
Önkal, D., Goodwin, P., Thomson, M., Gönül, M. S., & Pollock, A. (2009). The relative influence of advice from human experts and statistical methods on forecast adjustments. Journal of Behavioral Decision Making, 22(4), 390–409. https://doi.org/10.1002/bdm.637
Önkal, D., Sayım, K. Z., & Gönül, M. S. (2013). Scenarios as channels of forecast advice. Technological Forecasting and Social Change, 80(4), 772–788. https://doi.org/10.1016/j.techfore.2012.08.015
Ord, J. K., Fildes, R., & Kourentzes, N. (2017). Principles of business forecasting (2nd ed.). Wessex Press Publishing Co.
Ord, K., & Fildes, R. (2013). Principles of business forecasting (1st ed.). South-Western Cengage Learning, Mason, OH; Andover, UK.
Ordu, M., Demir, E., & Tofallis, C. (2019). A comprehensive modelling framework to forecast the demand for all hospital services. The International Journal of Health Planning and Management, 34(2), e1257–e1271.
Oreshkin, B. N., Carpov, D., Chapados, N., & Bengio, Y. (2020a). Meta-learning framework with applications to zero-shot time-series forecasting. arXiv:2002.02887.
Oreshkin, B. N., Carpov, D., Chapados, N., & Bengio, Y. (2020b). N-BEATS: Neural basis expansion analysis for interpretable time series forecasting. arXiv:1905.10437.
Ours, J. C. van. (2021). Common international trends in football stadium attendance. PLoS One, 16(3), e0247761.
Ozaki, T. (1979). Maximum likelihood estimation of Hawkes’ self-exciting point processes. Annals of the Institute of Statistical Mathematics, 31(1), 145–155. https://doi.org/10.1007/BF02480272
Ozer, M. (2011). Understanding the impacts of product knowledge and product type on the accuracy of intentions-based new product predictions. European Journal of Operational Research, 211(2), 359–369. https://doi.org/10.1016/j.ejor.2010.12.012
Özer, Ö., Zheng, Y., & Chen, K.-Y. (2011). Trust in forecast information sharing. Management Science, 57(6), 1111–1137. https://doi.org/10.1287/mnsc.1110.1334
Paccagnini, A. (2017). Dealing with Misspecification in DSGE Models: A Survey (MPRA Paper No. 82914). University Library of Munich, Germany.
Pacheco, J., Millán-Ruiz, D., & Vélez, J. L. (2009). Neural networks for forecasting in a multi-skill call centre. In International conference on engineering applications of neural networks (pp. 291–300). Springer.
Pai, J., & Pedersen, H. (1999). Threshold models of the term structure of interest rate. In Joint day Proceedings Volume of the XXXth International ASTIN Colloquium/9th International AFIR Colloquium (pp. 387–400). Tokyo, Japan.
Paillard, D. (2001). Glacial cycles: Towards a new paradigm. Reviews of Geophysics, 39, 325–346.
Pal, D., & Mitra, S. K. (2019). Correlation dynamics of crude oil with agricultural commodities: A comparison between energy and food crops. Economic Modelling, 82, 453–466. https://doi.org/10.1016/j.econmod.2019.05.017
Palm, F. C., & Zellner, A. (1992). To combine or not to combine? Issues of combining forecasts. Journal of Forecasting, 11(8), 687–701.
Panagiotelis, A., Athanasopoulos, G., Hyndman, R. J., Jiang, B., & Vahid, F. (2019). Macroeconomic forecasting for australia using a large number of predictors. International Journal of Forecasting, 35(2), 616–633.
Panagiotelis, A., Czado, C., & Joe, H. (2012). Pair copula constructions for multivariate discrete data. Journal of the American Statistical Association, 107(499), 1063–1072.
Panagiotelis, A., Czado, C., Joe, H., & Stöber, J. (2017). Model selection for discrete regular vine copulas. Computational Statistics & Data Analysis, 106, 138–152.
Panagiotelis, A., Gamakumara, P., Athanasopoulos, G., & Hyndman, R. J. (2020). Forecast reconciliation: A geometric view with new insights on bias correction. International Journal of Forecasting, in press. https://doi.org/https://doi.org/10.1080/01621459.2020.1736081
Panahifar, F., Byrne, P. J., & Heavey, C. (2015). A hybrid approach to the study of CPFR implementation enablers. Production Planning & Control, 26(13), 1090–1109. https://doi.org/10.1080/09537287.2015.1011725
Panda, C., & Narasimhan, V. (2007). Forecasting exchange rate better with artificial neural network. Journal of Policy Modeling, 29(2), 227–236. https://doi.org/10.1016/j.jpolmod.2006.01.005
Pankratz, A., & Dudley, U. (1987). Forecasts of power-transformed series. Journal of Forecasting, 6(4), 239–248.
Parag, Y., & Sovacool, B. K. (2016). Electricity market design for the prosumer era. Nature Energy, 1(4), 1–6.
Paredes, J., Pedregal, D. J., & Pérez, J. J. (2014). Fiscal policy analysis in the euro area: Expanding the toolkit. Journal of Policy Modeling, 36, 800–823.
Park, B.-J. (2002). An outlier robust GARCH model and forecasting volatility of exchange rate returns. Journal of Forecasting, 21(5), 381–393. https://doi.org/10.1002/for.827
Park, J., & Sandberg, I. W. (1991). Universal approximation using Radial-Basis-Function networks. Neural Computation, 3(2), 246–257. https://doi.org/10.1162/neco.1991.3.2.246
Park, S. Y., Yun, B.-Y., Yun, C. Y., Lee, D. H., & Choi, D. G. (2016). An analysis of the optimum renewable energy portfolio using the bottom–up model: Focusing on the electricity generation sector in South Korea. Renewable and Sustainable Energy Reviews, 53, 319–329. https://doi.org/10.1016/j.rser.2015.08.029
Parkinson, M. (1980). The extreme value method for estimating the variance of the rate of return. The Journal of Business, 53(1), 61–65. https://doi.org/10.1086/296071
Pastore, E., Alfieri, A., Zotteri, G., & Boylan, J. E. (2020). The impact of demand parameter uncertainty on the bullwhip effect. European Journal of Operational Research, 283(1), 94–107. https://doi.org/10.1016/j.ejor.2019.10.031
Patel, J. K. (1989). Prediction intervals - a review. Communications in Statistics - Theory and Methods, 18(7), 2393–2465.
Patel, V. M., & Lineweaver, C. (2019). Entropy production and the maximum entropy of the universe. Multidisciplinary Digital Publishing Institute Proceedings, 46(1), 11.
Patterson, K. D. (1995). An integrated model of the data measurement and data generation processes with an application to consumers’ expenditure. Economic Journal, 105, 54–76.
Patti, E., Acquaviva, A., Jahn, M., Pramudianto, F., Tomasi, R., Rabourdin, D., … Macii, E. (2016). Event-Driven User-Centric Middleware for Energy-Efficient Buildings and Public Spaces. IEEE Systems Journal, 10(3), 1137–1146.
Patton, A. (2013). Copula methods for forecasting multivariate time series. In Handbook of economic forecasting (Vol. 2, pp. 899–960). Elsevier.
Patton, Andrew J. (2006). Estimation of multivariate models for time series of possibly different lengths. Journal of Applied Econometrics, 21(2), 147–173.
Patton, A. J. (2006). Modelling asymmetric exchange rate dependence. International Economic Review, 47(2), 527–556.
Patton, Andrew J., & Timmermann, A. (2007). Testing forecast optimality under unknown loss. Journal of the American Statistical Association, 102, 1172–1184.
Pavia, J. M., Cabrer, B., & Sala, R. (2009). Updating input–output matrices: Assessing alternatives through simulation. Journal of Statistical Computation and Simulation, 79(12), 1467–1482. https://doi.org/10.1080/00949650802415154
Pavía, J. M., & Romero, R. (2021). Improving estimates accuracy of voter transitions. Two new algorithms for ecological inference based on linear programming. Advance.
Pavı́a, J. M. (2010). Improving predictive accuracy of exit polls. International Journal of Forecasting, 26(1), 68–81. https://doi.org/10.1016/j.ijforecast.2009.05.001
Pavı́a, J. M., Gil-Carceller, I., Rubio-Mataix, A., Coll, V., Alvarez-Jareño, J. A., Aybar, C., & Carrasco-Arroyo, S. (2019). The formation of aggregate expectations: Wisdom of the crowds or media influence? Contemporary Social Science, 14(1), 132–143. https://doi.org/10.1080/21582041.2017.1367831
Pavı́a, J. M., & Larraz, B. (2012). Nonresponse bias and superpopulation models in electoral polls. Reis, 137(1), 237–264. https://doi.org/10.5477/cis/reis.137.237
Pavı́a-Miralles, J. M. (2005). Forecasts from nonrandom samples. Journal of the American Statistical Association, 100(472), 1113–1122. https://doi.org/10.1198/016214504000001835
Pavı́a-Miralles, J. M., & Larraz-Iribas, B. (2008). Quick counts from non-selected polling stations. Journal of Applied Statistics, 35(4), 383–405. https://doi.org/10.1080/02664760701834881
Payne, J. W. (1982). Contingent decision behavior. Psychological Bulletin, 92(2), 382–402. https://doi.org/10.1037/0033-2909.92.2.382
Pearl, J. (2009). Causality: Models, reasoning, and inference (2nd ed.). Cambridge University Press.
Pearl, R., & Reed, L. J. (1920). On the rate of growth of the population of the united states since 1790 and its mathematical representation. Proceedings of the National Academy of Sciences of the United States of America, 6(6), 275–288. https://doi.org/10.1073/pnas.6.6.275
Pedregal, Diego J., & Carmen Carnero, M. (2006). State space models for condition monitoring: A case study. Reliability Engineering & System Safety, 91(2), 171–180. https://doi.org/10.1016/j.ress.2004.12.001
Pedregal, Diego J., Garcı́a, F. P., & Roberts, C. (2009). An algorithmic approach for maintenance management based on advanced state space systems and harmonic regressions. Annals of Operations Research, 166(1), 109–124. https://doi.org/10.1007/s10479-008-0403-5
Pedregal, D. J., & Pérez, J. J. (2010). Should quarterly government finance statistics be used for fiscal surveillance in Europe? International Journal of Forecasting, 26, 794–807.
Pedregal, D. J., Pérez, J. J., & Sánchez, A. J. (2014). A toolkit to strengthen government budget surveillance. Review of Public Economics, 211, 117–146.
Peel, D. A., & Speight, A. (2000). Threshold nonlinearities in unemployment rates: Further evidence for the UK and G3 economies. Applied Economics, 32(6), 705–715.
Pegels, C. C. (1969). Exponential forecasting: Some new variations. Management Sience, 15(5), 311–315.
Pelletier, D. (2006). Regime switching for dynamic correlations. Journal of Econometrics, 131(1), 445–473. https://doi.org/10.1016/j.jeconom.2005.01.013
Peña, I., Martinez-Anido, C. B., & Hodge, B.-M. (2018). An extended IEEE 118-bus test system with high renewable penetration. IEEE Transactions on Power Systems, 33(1), 281–289.
Peng, R. (2015). The reproducibility crisis in science: A statistical counterattack. Significance, 12(3), 30–32.
Pennings, Clint L. P., & Dalen, J. van. (2017). Integrated hierarchical forecasting. European Journal of Operational Research, 263(2), 412–418. https://doi.org/10.1016/j.ejor.2017.04.047
Pennings, Clint L. P., Dalen, J. van, & Rook, L. (2019). Coordinating judgmental forecasting: Coping with intentional biases. Omega, 87, 46–56. https://doi.org/10.1016/j.omega.2018.08.007
Pereira, L. N. (2016). An introduction to helpful forecasting methods for hotel revenue management. International Journal of Hospitality Management, 58, 13–23. https://doi.org/10.1016/j.ijhm.2016.07.003
Perera, H. N., Hurley, J., Fahimnia, B., & Reisi, M. (2019). The human factor in supply chain forecasting: A systematic review. European Journal of Operational Research, 274(2), 574–600. https://doi.org/10.1016/j.ejor.2018.10.028
Peres, R., Muller, E., & Mahajan, V. (2010). Innovation diffusion and new product growth models: A critical review and research directions. International Journal of Research in Marketing, 27, 91–106.
Pesaran, M. H. M. H., Pick, A., & Timmermann, A. (2011). Variable selection, estimation and inference for multi-period forecasting problems. Journal of Econometrics, 164(250), 173–187.
Pesaran, M. H., Pick, A., & Pranovich, M. (2013). Optimal forecasts in the presence of structural breaks. Journal of Econometrics, 177(2), 134–152.
Pesaran, M. H., Shin, Y., & Smith, R. P. (1999). Pooled mean group estimation of dynamic heterogeneous panels. Journal of the American Statistical Association, 94(446), 621–634. https://doi.org/10.2307/2670182
Peters, J., Janzing, D., & Schölkopf, B. (2017). Elements of causal inference. MIT Press.
Petropoulos, F. (2015). Forecasting support systems: Ways forward. Foresight: The International Journal of Applied Forecasting, 39, 5–11.
Petropoulos, F., Fildes, R., & Goodwin, P. (2016). Do “big losses” in judgmental adjustments to statistical forecasts affect experts’ behaviour? European Journal of Operational Research, 249(3), 842–852. https://doi.org/10.1016/j.ejor.2015.06.002
Petropoulos, F., Goodwin, P., & Fildes, R. (2017). Using a rolling training approach to improve judgmental extrapolations elicited from forecasters with technical knowledge. International Journal of Forecasting, 33(1), 314–324. https://doi.org/10.1016/j.ijforecast.2015.12.006
Petropoulos, F., Hyndman, R. J., & Bergmeir, C. (2018). Exploring the sources of uncertainty: Why does bagging for time series forecasting work? European Journal of Operational Research, 268(2), 545–554. https://doi.org/10.1016/j.ejor.2018.01.045
Petropoulos, F., & Kourentzes, N. (2014). Improving forecasting via multiple temporal aggregation. Foresight: The International Journal of Applied Forecasting, 34, 12–17.
Petropoulos, F., & Kourentzes, N. (2015). Forecast combinations for intermittent demand. The Journal of the Operational Research Society, 66(6), 914–924. https://doi.org/10.1057/jors.2014.62
Petropoulos, F., Kourentzes, N., Nikolopoulos, K., & Siemsen, E. (2018). Judgmental selection of forecasting models. Journal of Operations Management, 60, 34–46. https://doi.org/10.1016/j.jom.2018.05.005
Petropoulos, F., & Makridakis, S. (2020). Forecasting the novel coronavirus COVID-19. PloS One, 15(3), e0231236. https://doi.org/10.1371/journal.pone.0231236
Petropoulos, F., Makridakis, S., Assimakopoulos, V., & Nikolopoulos, K. (2014). Horses for Courses in demand forecasting. European Journal of Operational Research, 237(1), 152–163.
Petropoulos, F., Makridakis, S., & Stylianou, N. (2020). COVID-19: Forecasting confirmed cases and deaths with a simple time-series model. International Journal of Forecasting.
Pettenuzzo, D., & Ravazzolo, F. (2016). Optimal portfolio choice under decision-based model combinations. Journal of Applied Econometrics, 31(7), 1312–1332.
Pfann, G. A., Schotman, P. C., & Tschernig, R. (1996). Nonlinear interest rate dynamics and implications for the term structure. Journal of Econometrics, 74(1), 149–176. https://doi.org/10.1016/0304-4076(95)01754-2
Phillips, A. W. H. (1958). The relation between unemployment and the rate of change of money wage rates in the United Kingdom, 1861–1957. Economica, 25, 283–299.
Phillips, D. E., Adair, T., & Lopez, A. D. (2018). How useful are registered birth statistics for health and social policy? A global systematic assessment of the availability and quality of birth registration data. Population Health Metrics, 16(1), 1–13. https://doi.org/10.1186/s12963-018-0180-6
Phillips, P. C. B. (1987). Time series regression with a unit root. Econometrica, 55(2), 277–301. https://doi.org/10.2307/1913237
Pierce, M. A., Hess, E. P., Kline, J. A., Shah, N. D., Breslin, M., Branda, M. E., … Montori, V. M. (2010). The chest pain choice trial: A pilot randomized trial of a decision aid for patients with chest pain in the emergency department. Trials, 11(1), 1–8.
Piironen, J., & Vehtari, A. (2017). Comparison of Bayesian predictive methods for model selection. Statistics and Computing, 27(3), 711–735.
Pinheiro Neto, D., Domingues, E. G., Coimbra, A. P., Almeida, A. T. de, Alves, A. J., & Calixto, W. P. (2017). Portfolio optimization of renewable energy assets: Hydro, wind, and photovoltaic energy in the regulated market in Brazil. Energy Economics, 64, 238–250. https://doi.org/10.1016/j.eneco.2017.03.020
Pinker, S. (2011). The better angels of our nature: The decline of violence in history and its causes. Penguin UK.
Pinker, S. (2018). Enlightenment now: The case for reason, science, humanism, and progress. Penguin.
Pinson, P. (2012). Very-short-term probabilistic forecasting of wind power with generalized logit-normal distributions. Journal of the Royal Statistical Society: Series C, 4, 555–576.
Pinson, P., Chevallier, C., & Kariniotakis, G. (2007). Trading wind generation from short-term probabilistic forecasts of wind power. IEEE Transaction on Power Systems, 22(3), 1148–1156.
Pinson, Pierre, Madsen, H., Nielsen, H. Aa., Papaefthymiou, G., & Klöckl, B. (2009). From probabilistic forecasts to statistical scenarios of short‐term wind power production. Wind Energy, 12(1), 51–62.
Pinson, Pierre, & Makridakis, S. (2020). Pandemics and forecasting: The way forward through the Taleb-Ioannidis debate. International Journal of Forecasting. https://doi.org/10.1016/j.ijforecast.2020.08.007
Pinson, P., Reikard, G., & Bidlot, J.-R. (2012). Probabilistic forecasting of the wave energy flux. Applied Energy, 93, 364–370. https://doi.org/10.1016/j.apenergy.2011.12.040
Pinson, Pierre, & Tastu, J. (2013). Discrimination ability of the energy score. Technical University of Denmark (DTU).
Pirolli, P., & Card, S. (1999). Information foraging. Psychological Review, 106(4), 643–675. https://doi.org/10.1037/0033-295X.106.4.643
Pitt, M., Chan, D., & Kohn, R. (2006). Efficient Bayesian inference for Gaussian copula regression models. Biometrika, 93(3), 537–554. https://doi.org/10.1093/biomet/93.3.537
Plescia, C., & De Sio, L. (2018). An evaluation of the performance and suitability of R \(\times\) C methods for ecological inference with known true values. Quality & Quantity, 52(2), 669–683. https://doi.org/10.1007/s11135-017-0481-z
Plott, C., & Chen, K.-Y. (2002). Information aggregation mechanisms: Concept, design and implementation for a sales forecasting problem (No. 1131). California Institute of Technology, Division of the Humanities; Social Sciences; California Institute of Technology, Division of the Humanities; Social Sciences.
Poccia, D. (2019). Amazon forecast – now generally available. https://aws.amazon.com/blogs/aws/amazon-forecast-now-generally-available/.
Politi, M. C., Han, P. K., & Col, N. F. (2007). Communicating the uncertainty of harms and benefits of medical interventions. Medical Decision Making, 27(5), 681–695. https://doi.org/10.1177/0272989X07307270
Politis, D. N., & Romano, J. P. (1992). A circular block-resampling procedure for stationary data. Exploring the Limits of Bootstrap, 2635270.
Politis, D. N., & Romano, J. P. (1994). The stationary bootstrap. Journal of the American Statistical Association, 89(428), 1303–1313.
Polk, C., Haghbin, M., & Longis, A. de. (2020). Time-series variation in factor premia: The influence of the business cycle. Journal of Investment Management, 18(1). Journal Article.
Polson, N. G., & Sokolov, V. O. (2017). Deep learning for short-term traffic flow prediction. Transportation Research Part C: Emerging Technologies, 79, 1–17.
Porras, E., & Dekker, R. (2008). An inventory control system for spare parts at a refinery: An empirical comparison of different re-order point methods. European Journal of Operational Research, 184(1), 101–132.
Powell, W. B. (2019). A unified framework for stochastic optimization. European Journal of Operational Research, 275(3), 795–821.
Poynting, J. H. (1884). A comparison of the fluctuations in the price of wheat and in the cotton and silk imports into Great Britain. Journal of the Statistical Society of London, 47(1), 34–74.
Pradeepkumar, D., & Ravi, V. (2017). Forecasting financial time series volatility using particle swarm optimization trained quantile regression neural network. Applied Soft Computing, 58, 35–52. https://doi.org/10.1016/j.asoc.2017.04.014
Prahl, A., & Van Swol, L. (2017). Understanding algorithm aversion: When is advice from automation discounted? Journal of Forecasting, 36(6), 691–702. https://doi.org/10.1002/for.2464
Prak, D., Teunter, R., & Syntetos, A. (2017). On the calculation of safety stocks when demand is forecasted. European Journal of Operational Research, 256(2), 454–461. https://doi.org/10.1016/j.ejor.2016.06.035
Preston, S., Heuveline, P., & Guillot, M. (2000). Demography: Measuring and modeling population processes. Wiley.
Prestwich, S. D., Tarim, S. A., Rossi, R., & Hnich, B. (2014). Forecasting intermittent demand by hyperbolic-exponential smoothing. International Journal of Forecasting, 30(4), 928–933. https://doi.org/10.1016/j.ijforecast.2014.01.006
Pretis, Felix. (2020). Econometric modelling of climate systems: The equivalence of energy balance models and cointegrated vector autoregressions. Journal of Econometrics, 214(1), 256–273.
Pretis, F., & Kaufmann, R. K. (2018). Out-of-sample Paleo-climate simulations: Testing hypotheses about the Mid-Brunhes event, the Stage 11 paradox, and orbital variations (Discussion Paper). Canada: University of Victoria.
Pretis, F., & Kaufmann, R. K. (2020). Managing carbon emissions to avoid the next Ice Age (Discussion Paper). Canada: University of Victoria.
Pretis, F., Reade, J. J., & Sucarrat, G. (2017). gets: General-to-Specific (GETS) Modelling and Indicator Saturation Methods.
Pretis, F., Reade, J. J., & Sucarrat, G. (2018). Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks. Journal of Statistical Software, 86(3).
Pretis, F., Schneider, L., & Smerdon, J. E. (2016). Detecting volcanic eruptions in temperature reconstructions by designed break-indicator saturation. Journal of Economic Surveys, 30(3), 403–429.
Pritularga, K. F., Svetunkov, I., & Kourentzes, N. (2021). Stochastic coherency in forecast reconciliation. International Journal of Production Economics, 240, 108221. https://doi.org/https://doi.org/10.1016/j.ijpe.2021.108221
Proietti, T. (2003). Forecasting the US unemployment rate. Computational Statistics & Data Analysis, 42, 451–476.
Promprou, S., Jaroensutasinee, M., & Jaroensutasinee, K. (2006). Forecasting dengue haemorrhagic fever cases in southern Thailand using ARIMA models. Dengue Bulletin, 30, 99–106.
Prudêncio, R. B., & Ludermir, T. B. (2004). Meta-learning approaches to selecting time series models. Neurocomputing, 61, 121–137.
Psaradellis, I., & Sermpinis, G. (2016). Modelling and trading the U.S. Implied volatility indices. Evidence from the VIX, VXN and VXD indices. International Journal of Forecasting, 32(4), 1268–1283. https://doi.org/10.1016/j.ijforecast.2016.05.004
Puig, X., & Ginebra, J. (2015). Ecological inference and spatial variation of individual behavior: National divide and elections in catalonia. Geographical Analysis, 47(3), 262–283. https://doi.org/10.1111/gean.12056
Qiao, Z., Wu, X., Ge, S., & Fan, W. (2019). MNN: Multimodal attentional neural networks for diagnosis prediction. Extraction, 1, A1.
Qu, X., Kang, X., Zhang, C., Jiang, S., & Ma, X. (2016). Short-term prediction of wind power based on deep long Short-Term memory. In 2016 IEEE PES Asia-Pacific power and energy engineering conference (APPEEC) (pp. 1148–1152). https://doi.org/10.1109/APPEEC.2016.7779672
Quaedvlieg, R. (2019). Multi-horizon forecast comparison. Journal of Business & Economic Statistics, 1–14. https://doi.org/10.1080/07350015.2019.1620074
Queiroz, A. R. de. (2016). Stochastic hydro-thermal scheduling optimization: An overview. Renewable and Sustainable Energy Reviews, 62, 382–395. https://doi.org/10.1016/j.rser.2016.04.065
Quiroz, M., Nott, D. J., & Kohn, R. (2018). Gaussian variational approximation for high-dimensional state space models. arXiv:1801.07873.
R Core Team. (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Rabanser, S., Januschowski, T., Flunkert, V., Salinas, D., & Gasthaus, J. (2020). The effectiveness of discretization in forecasting: An empirical study on neural time series models. arXiv:2005.10111.
Racine, J. (2000). Consistent cross-validatory model-selection for dependent data: Hv-block cross-validation. Journal of Econometrics, 99(1), 39–61.
Raftery, A. E. (1993). Bayesian model selection in structural equation models. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 163–180). Newbury Park, CA: Sage.
Raftery, A. E. (2016). Use and communication of probabilistic forecasts. Statistical Analysis and Data Mining: The ASA Data Science Journal, 9(6), 397–410. https://doi.org/10.1002/sam.11302
Raftery, A. E., Madigan, D., & Hoeting, J. A. (1997). Bayesian model averaging for linear regression models. Journal of the American Statistical Association, 92(437), 179–191. https://doi.org/10.2307/2291462
Rahman, S., & Serletis, A. (2012). Oil price uncertainty and the Canadian economy: Evidence from a VARMA, GARCH-in-Mean, asymmetric BEKK model. Energy Economics, 34(2), 603–610.
Rajvanshi, V. (2015). Performance of range and return based volatility estimators: evidence from Indian crude oil futures market. Global Economy and Finance Journal, 8(1), 46–66. https://doi.org/10.21102/gefj.2015.03.81.04
Ramos, M., Mathevet, T., Thielen, J., & Pappenberger, F. (2010). Communicating uncertainty in hydro‐meteorological forecasts: Mission impossible? Meteorological Applications, 17(2), 223–235.
Ramos, P., & Oliveira, J. M. (2016). A procedure for identification of appropriate state space and ARIMA models based on time-series cross-validation. Algorithms, 9(4), 76. https://doi.org/https://doi.org/10.3390/a9040076
Ramos, P., Santos, N., & Rebelo, R. (2015). Performance of state space and ARIMA models for consumer retail sales forecasting. Robotics and Computer-Integrated Manufacturing, 34, 151–163. https://doi.org/https://doi.org/10.1016/j.rcim.2014.12.015
Ranawana, R., & Palade, V. (2006). Optimized precision-a new measure for classifier performance evaluation. In 2006 IEEE international conference on evolutionary computation (pp. 2254–2261). IEEE.
Rangapuram, S. S., Bezenac, E. de, Benidis, K., Stella, L., & Januschowski, T. (2020). Normalizing Kalman filters for multivariate time series analysis. In Advances in Neural Information Processing Systems (pp. 7785–7794).
Rangapuram, S. S., Seeger, M. W., Gasthaus, J., Stella, L., Wang, Y., & Januschowski, T. (2018). Deep state space models for time series forecasting. In Advances in Neural Information Processing Systems (pp. 7785–7794).
Rangarajan, P., Mody, S. K., & Marathe, M. (2019). Forecasting dengue and influenza incidences using a sparse representation of Google trends, electronic health records, and time series data. PLoS Computational Biology, 15(11), e1007518.
Ranjan, R., & Gneiting, T. (2010). Combining probability forecasts. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 72(1), 71–91.
Rao, J. K., Anderson, L. A., Sukumar, B., Beauchesne, D. A., Stein, T., & Frankel, R. M. (2010). Engaging communication experts in a Delphi process to identify patient behaviors that could enhance communication in medical encounters. BMC Health Services Research, 10, 97. https://doi.org/10.1186/1472-6963-10-97
Rao, K. U., & Kishore, V. (2010). A review of technology diffusion models with special reference to renewable energy technologies. Renewable and Sustainable Energy Reviews, 14(3), 1070–1078.
Rao, Y., & McCabe, B. (2016). Real-time surveillance for abnormal events: The case of influenza outbreaks. Statistics in Medicine, 35(13), 2206–2220.
Rapach, D. E., & Strauss, J. K. (2009). Differences in housing price forecastability across U.S. states. International Journal of Forecasting, 25(2), 351–372.
Rapach, D. E., Strauss, J. K., Tu, J., & Zhou, G. (2019). Industry return predictability: A machine learning approach. The Journal of Financial Data Science, 1(3), 9–28.
Rapach, D. E., Strauss, J. K., & Zhou, G. (2010). Out-of-sample equity premium prediction: Combination forecasts and links to the real economy. Review of Financial Studies, 23(2), 821–862.
Rapach, D. E., Strauss, J. K., & Zhou, G. (2013). International stock return predictability: What is the role of the United States? Journal of Finance, 68(4), 1633–1662.
Rapach, D. E., & Zhou, G. (2020). Time-series and cross-sectional stock return forecasting: New machine learning methods. In E. Jurczenko (Ed.), Machine learning for asset management: New developments and financial applications (pp. 1–34). Hoboken, NJ: Wiley.
Rasp, S., Pritchard, M. S., & Gentine, P. (2018). Deep learning to represent subgrid processes in climate models. Proceedings of the National Academy of Sciences, 115(39), 9684–9689.
Ravishanker, N., Wu, L. S., & Glaz, J. (1991). Multiple prediction intervals for time series: Comparison of simultaneous and marginal intervals. Journal of Forecasting, 10(5), 445–463.
Raymer, J., & Wiśniowski, A. (2018). Applying and testing a forecasting model for age and sex patterns of immigration and emigration. Population Studies, 72(3), 339–355. https://doi.org/10.1080/00324728.2018.1469784
Reade, J. J., Singleton, C. A., & Brown, A. (2020). Evaluating Strange Forecasts: The Curious Case of Football Match Scorelines. Scottish Journal of Political Economy.
Rebollo, J., & Balakrishnan, H. (2014). Characterization and prediction of air traffic delays. Transportation Research Part C: Emerging Technologies, 44, 231–241.
Rees, P. H., & Wilson, A. G. (1973). Accounts and models for spatial demographic analysis I: Aggregate population. Environment & Planning A, 5(1), 61–90. https://doi.org/10.1068/a050061
Reggiani, P., & Boyko, O. (2019). A Bayesian processor of uncertainty for precipitation forecasting using multiple predictors and censoring. Monthly Weather Review, 147(12), 4367–4387. https://doi.org/10.1175/MWR-D-19-0066.1
Reid, D. (1972). A comparison of forecasting techniques on economic time series. Forecasting in Action. Operational Research Society and the Society for Long Range Planning.
Reikard, G., Pinson, P., & Bidlot, J.-R. (2011). Forecasting ocean wave energy: The ECMWF wave model and time series methods. Ocean Engineering, 38(10), 1089–1099. https://doi.org/10.1016/j.oceaneng.2011.04.009
Reikard, G., Robertson, B., Buckham, B., Bidlot, J.-R., & Hiles, C. (2015). Simulating and forecasting ocean wave energy in western Canada. Ocean Engineering, 103, 223–236. https://doi.org/10.1016/j.oceaneng.2015.04.081
Reimers, S., & Harvey, N. (2011). Sensitivity to autocorrelation in judgmental time series forecasting. International Journal of Forecasting, 27(4), 1196–1214. https://doi.org/10.1016/j.ijforecast.2010.08.004
Rendall, M. S., Handcock, M. S., & Jonsson, S. H. (2009). Bayesian estimation of Hispanic fertility hazards from survey and population data. Demography, 46(1), 65–83. https://doi.org/10.1353/dem.0.0041
Renzl, B. (2008). Trust in management and knowledge sharing: The mediating effects of fear and knowledge documentation. Omega, 36(2), 206–220. https://doi.org/10.1016/j.omega.2006.06.005
Riahi, N., Hosseini-Motlagh, S.-M., & Teimourpour, B. (2013). A three-phase hybrid times series modeling framework for improved hospital inventory demand forecast. International Journal of Hospital Research, 2(3), 133–142.
Rice, G., Wirjanto, T., & Zhao, Y. (2020). Tests for conditional heteroscedasticity of functional data. Journal of Time Series Analysis, 41(6), 733–758. https://doi.org/10.1111/jtsa.12532
Richardson, L. F. (1948). Variation of the frequency of fatal quarrels with magnitude. Journal of the American Statistical Association, 43(244), 523–546. https://doi.org/10.2307/2280704
Richardson, L. F. (1960). Statistics of deadly quarrels. Boxwood Press.
Riedel, K. (2021). The value of the high, low and close in the estimation of Brownian motion. Statistical Inference for Stochastic Processes, 24, 179–210.
Rios, I., Wets, R. J.-B., & Woodruff, D. L. (2015). Multi-period forecasting and scenario generation with limited data. Computational Management Science, 12, 267–295.
Ritchie, H., Ortiz-Ospina, E., Beltekian, D., Mathieu, E., Hasell, J., Macdonald, B., … Roser, M. (2020). Coronavirus Pandemic (COVID-19). https://ourworldindata.org/coronavirus; Oxford: INET Oxford Working Paper.
Riveiro, M., Helldin, T., Falkman, G., & Lebram, M. (2014). Effects of visualizing uncertainty on decision-making in a target identification scenario. Computers & Graphics, 41, 84–98. https://doi.org/10.1016/j.cag.2014.02.006
Roberts, J. M. (2001). Estimates of the productivity trend using time-varying parameter techniques. The BE Journal of Macroeconomics, 1(1).
Robinson, W. S. (1950). Ecological correlations and the behavior of individuals. American Sociological Review, 15(3), 351–357. https://doi.org/10.2307/2087176
Rodriguez, J. C. (2007). Measuring financial contagion: A copula approach. Journal of Empirical Finance, 14(3), 401–423.
Rodrı́guez-Sanz, Á., Comendador, F., Valdés, R., Pérez-Castán, J., Montes, R. B., & Serrano, S. (2019). Assessment of airport arrival congestion and delay: Prediction and reliability. Transportation Research Part C: Emerging Technologies, 98, 255–283.
Rogers, A. (1975). Introduction to multiregional mathematical demography. New York: Wiley.
Rogers, L. C. G., & Satchell, S. E. (1991). Estimating variance from high, low and closing prices. The Annals of Applied Probability, 1(4), 504–512. https://doi.org/10.1214/aoap/1177005835
Romero, D., Olivero, J., Real, R., & Guerrero, J. C. (2019). Applying fuzzy logic to assess the biogeographical risk of dengue in south america. Parasites & Vectors, 12(1), 1–13.
Romero, R., Pavı́a, J. M., Martı́n, J., & Romero, G. (2020). Assessing uncertainty of voter transitions estimated from aggregated data. Application to the 2017 French presidential election. Journal of Applied Statistics, 47(13-15), 2711--2736. https://doi.org/10.1080/02664763.2020.1804842
Rosen, O., Jiang, W., King, G., & Tanner, M. A. (2001). Bayesian and frequentist inference for ecological inference: The RxC case. Statistica Neerlandica, 55(2), 134–156. https://doi.org/10.1111/1467-9574.00162
Rosenblatt, M. (1952). Remarks on a multivariate transformation. Annals of Mathematical Statistics, 23, 470–472.
Rossi, B. (2005). Testing long-horizon predictive ability with high persistence, and the meese–rogoff puzzle. International Economic Review, 46(1), 61–92. https://doi.org/10.1111/j.0020-6598.2005.00310.x
Rossi, B. (2013). Exchange rate predictability. Journal of Economic Literature, 51(4), 1063–1119.
Rossi, B., & Sekhposyan, T. (2016). Forecast Rationality Tests in the Presence of Instabilities, with Applications to Federal Reserve and Survey Forecasts. Journal of Applied Econometrics, 31(3), 507–532.
Rostami-Tabar, B., Babai, M. Z., Syntetos, A., & Ducq, Y. (2013). Demand forecasting by temporal aggregation. Naval Research Logistics, 60(6), 479–498. https://doi.org/10.1002/nav.21546
Rostami-Tabar, B., & Ziel, F. (2020). Anticipating special events in emergency department forecasting. International Journal of Forecasting.
Rothman, P. (1998). Forecasting asymmetric unemployment rates. Review of Economics and Statistics, 80(1), 164–168.
Rothschild, D. (2009). Forecasting elections: Comparing prediction markets, polls, and their biases. Public Opinion Quarterly, 73(5), 895–916.
Rottenberg, S. (1956). The Baseball Players’ Labor Market. The Journal of Political Economy, 64(3), 242–258.
Roulin, E., & Vannitsem, S. (2019). Post-processing of seasonal predictions – case studies using EUROSIP hindcast data base. Nonlinear Processes in Geophysics. https://doi.org/10.5194/npg-2019-45
Rousseau, D. M., Sitkin, S. B., Burt, R. S., & Camerer, C. F. (1998). Not so different after all: A cross-discipline view of trust. Academy of Management Review, 23(3), 393–404.
Rowe, G., & Wright, G. (1999). The delphi technique as a forecasting tool: Issues and analysis. International Journal of Forecasting, 15(4), 353–375. https://doi.org/10.1016/S0169-2070(99)00018-7
Rowe, G., & Wright, G. (2001). Expert opinions in forecasting: The role of the Delphi technique. In J. Scott Armstrong (Ed.), Principles of forecasting: A handbook for researchers and practitioners (pp. 125–144). Boston, MA: Springer US. https://doi.org/10.1007/978-0-306-47630-3\_7
Royer, J. Ff. (1993). Review of recent advances in dynamical extended range forecasting for the extratropics. In J. Shukla (Ed.), Prediction of interannual climate variations (pp. 49–69). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-76960-3_3
Ruano, A. E., Crispim, E. M., Conceiçao, E. Z., & Lúcio, M. M. J. (2006). Prediction of building’s temperature using neural networks models. Energy and Buildings, 38(6), 682–694.
Rubaszek, M. (2020). Forecasting crude oil prices with DSGE models. International Journal of Forecasting. https://doi.org/doi.org/10.1016/j.ijforecast.2020.07.004
Ruddiman, W. F. (2005). Plows, plagues and petroleum: How humans took control of climate. Princeton: Princeton University Press.
Rycroft, R. S. (1993). Microcomputer software of interest to forecasters in comparative review: An update. International Journal of Forecasting, 9(4), 531–575. https://doi.org/http://dx.doi.org/10.1016/0169-2070(93)90080-7
Sa, J. (1987). Reservations forecasting in airline yield management (PhD thesis). Massachusetts Institute of Technology.
Sacheti, A., Gregory-Smith, I., & Paton, D. (2014). Uncertainty of Outcome or Strengths of Teams: An Economic Analysis of Attendance Demand for International Cricket. Applied Economics, 46(17), 2034–2046.
Sah, S., Moore, D. A., & MacCoun, R. J. (2013). Cheap talk and credibility: The consequences of confidence and accuracy on advisor credibility and persuasiveness. Organizational Behavior and Human Decision Processes, 121(2), 246–255. https://doi.org/10.1016/j.obhdp.2013.02.001
Sakamoto, Y., Ishiguro, M., & Kitagawa, G. (1986). Akaike information criterion statistics. Dordrecht, The Netherlands: D. Reidel, 81.
Sakata, S., & White, H. (1998). High breakdown point conditional dispersion estimation with application to S&P 500 daily returns volatility. Econometrica, 66(3), 529–568.
Sakia, R. M. (1992). The box-cox transformation technique: A review. Journal of the Royal Statistical Society: Series D (The Statistician), 41(2), 169–178.
Saksornchai, T., Wei-Jen Lee, Methaprayoon, K., Liao, J. R., & Ross, R. J. (2005). Improve the unit commitment scheduling by using the neural-network-based short-term load forecasting. IEEE Transactions on Industry Applications, 41(1), 169–179. https://doi.org/10.1109/TIA.2004.841029
Salinas, D., Bohlke-Schneider, M., Callot, L., Medico, R., & Gasthaus, J. (2019). High-dimensional multivariate forecasting with low-rank gaussian copula processes. In Advances in neural information processing systems (pp. 6827–6837).
Salinas, D., Flunkert, V., Gasthaus, J., & Januschowski, T. (2019). DeepAR: Probabilistic forecasting with autoregressive recurrent networks. International Journal of Forecasting.
Salway, R., & Wakefield, J. (2004). A common framework for ecological inference in epidemiology, political science and sociology. In Ecological inference: New methodological strategies (pp. 303–332). Cambridge University Press.
Sanders, N. R., & Manrodt, K. B. (2003). Forecasting software in practice: Use, satisfaction, and performance. Interfaces, 33(5), 90–93. https://doi.org/10.1287/inte.33.5.90.19251
Sanderson, J. (2012). Risk, uncertainty and governance in megaprojects: A critical discussion of alternative explanations. International Journal of Project Management, 30(4), 432–443. https://doi.org/10.1016/j.ijproman.2011.11.002
Santos, M. S., Abreu, P. H., Garca-Laencina, P. J., Simão, A., & Carvalho, A. (2015). A new cluster-based oversampling method for improving survival prediction of hepatocellular carcinoma patients. Journal of Biomedical Informatics, 58, 49–59.
Sardinha-Lourenço, A., Andrade-Campos, A., Antunes, A., & Oliveira, M. S. (2018). Increased performance in the short-term water demand forecasting through the use of a parallel adaptive weighting strategy. Journal of Hydrology, 558, 392–404. https://doi.org/10.1016/j.jhydrol.2018.01.047
Savin, S., & Terwiesch, C. (2005). Optimal product launch times in a duopoly: Balancing life-cycle revenues with product cost. Operations Research, 53, 26–47.
Scerri, M., De Goumoens, P., Fritsch, C., Van Melle, G., Stiefel, F., & So, A. (2006). The INTERMED questionnaire for predicting return to work after a multidisciplinary rehabilitation program for chronic low back pain. Joint Bone Spine, 73(6), 736–741.
Schäfer, A. M., & Zimmermann, H. G. (2006). Recurrent neural networks are universal approximators. In Artificial neural networks – ICANN 2006 (pp. 632–640). Springer Berlin Heidelberg. https://doi.org/10.1007/11840817\_66
Scharpf, A., Schneider, G., Nöh, A., & Clauset, A. (2014). Forecasting the risk of extreme massacres in Syria. European Review of International Studies, 1(2), 50–68.
Schefzik, R., Thorarinsdottir, T. L., & Gneiting, T. (2013). Uncertainty quantification in complex simulation models using ensemble copula coupling. Statistical Science, 28(4), 616–640.
Scheuerer, M., & Hamill, T. M. (2015). Variogram-based proper scoring rules for probabilistic forecasts of multivariate quantities. Monthly Weather Review, 143(4), 1321–1334.
Scheuren, F. J., & Alvey, W. (2008). Elections and exit polling. Hoboken (New Yersey): John Wiley & Sons.
Schmertmann, C. P. (2003). A system of model fertility schedules with graphically intuitive parameters. Demographic Research, 9, 81–110.
Schmertmann, C., Zagheni, E., Goldstein, J. R., & Myrskylä, M. (2014). Bayesian forecasting of cohort fertility. Journal of the American Statistical Association, 109(506), 500–513. https://doi.org/10.1080/01621459.2014.881738
Schnaars, S. P., & Topol, M. T. (1987). The use of multiple scenarios in sales forecasting: An empirical test. International Journal of Forecasting, 3(3), 405–419. https://doi.org/10.1016/0169-2070(87)90033-1
Schoemaker, P. J. H. (1991). When and how to use scenario planning: A heuristic approach with illustration. Journal of Forecasting, 10(6), 549–564. https://doi.org/10.1002/for.3980100602
Schoen, R. (1987). Modeling multigroup populations. Springer Science & Business Media.
Schönbucher, P. J. (2003). Credit derivatives pricing models: Models, pricing and implementation. John Wiley & Sons.
Schubert, S., & Rickard, R. (2011). Using forecast value added analysis for data-driven forecasting improvement. IBF Best Practices Conference.
Schwanenberg, D., Fan, F. M., Naumann, S., Kuwajima, J. I., Montero, R. A., & Assis dos Reis, A. (2015). Short-Term reservoir optimization for flood mitigation under meteorological and hydrological forecast uncertainty. Water Resources Management, 29(5), 1635–1651. https://doi.org/10.1007/s11269-014-0899-1
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464.
Scott Armstrong, J. (2006). Should the forecasting process eliminate Face-to-Face meetings? Foresight: The International Journal of Applied Forecasting, 5, 3–8.
Seaman, B. (2018). Considerations of a retail forecasting practitioner. International Journal of Forecasting, 34(4), 822–829. https://doi.org/https://doi.org/10.1016/j.ijforecast.2018.03.001
Seifert, D. (2003). Collaborative planning, forecasting, and replenishment: How to create a supply chain advantage. New York: AMACOM.
Semenoglou, A.-A., Spiliotis, E., Makridakis, S., & Assimakopoulos, V. (2021). Investigating the accuracy of cross-learning time series forecasting methods. International Journal of Forecasting, 37(3), 1072–1084. https://doi.org/https://doi.org/10.1016/j.ijforecast.2020.11.009
Semero, Y. K., Zhang, J., & Zheng, D. (2020). EMD–PSO–ANFIS-based hybrid approach for short-term load forecasting in microgrids. IET Generation, Transmission and Distribution, 14(3), 470–475. https://doi.org/10.1049/iet-gtd.2019.0869
Seong, Y., & Bisantz, A. M. (2008). The impact of cognitive feedback on judgment performance and trust with decision aids. International Journal of Industrial Ergonomics, 38(7), 608–625. https://doi.org/10.1016/j.ergon.2008.01.007
Serletis, A., & Rangel-Ruiz, R. (2004). Testing for common features in North American energy markets. Energy Economics, 26(3), 401–414.
Setel, P., AbouZahr, C., Atuheire, E. B., Bratschi, M., Cercone, E., Chinganya, O., … Tshangelab, A. (2020). Mortality surveillance during the COVID-19 pandemic. Bulletin of the World Health Organization, 98(6), 374.
Setzler, H., Saydam, C., & Park, S. (2009). EMS call volume predictions: A comparative study. Computers & Operations Research, 36(6), 1843–1851.
Shackleton, M. B., Taylor, S. J., & Yu, P. (2010). A multi-horizon comparison of density forecasts for the S&P 500 using index returns and option prices. Journal of Banking and Finance, 34(11), 2678–2693. https://doi.org/https://doi.org/10.1016/j.jbankfin.2010.05.006
Shah, I., & Lisi, F. (2020). Forecasting of electricity price through a functional prediction of sale and purchase curves. Journal of Forecasting, 39(2), 242–259.
Shahriari, M., & Blumsack, S. (2018). The capacity value of optimal wind and solar portfolios. Energy, 148, 992–1005. https://doi.org/10.1016/j.energy.2017.12.121
Shale, E. A., Boylan, J. E., & Johnston, F. R. (2006). Forecasting for intermittent demand: The estimation of an unbiased average. The Journal of the Operational Research Society, 57(5), 588–592.
Shaman, J., & Karspeck, A. (2012). Forecasting seasonal outbreaks of influenza. Proceedings of the National Academy of Sciences, 109(50), 20425–20430.
Shang, G., McKie, E. C., Ferguson, M. E., & Galbreth, M. R. (2020). Using transactions data to improve consumer returns forecasting. Journal of Operations Management, 66(3), 326–348. https://doi.org/10.1002/joom.1071
Shang, Han Lin, & Booth, H. (2020). Synergy in fertility forecasting: Improving forecast accuracy through model averaging. Genus, 76.
Shang, H. L., Booth, H., & Hyndman, R. J. (2011). Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods. Demographic Research, 25, 173–214.
Shang, H. L., & Haberman, S. (2020a). Forecasting age distribution of death counts: An application to annuity pricing. Annals of Actuarial Science, 14(1), 150–169.
Shang, H. L., & Haberman, S. (2020b). Retiree mortality forecasting: A partial age-range or a full age-range model? Risks, 8(3), 69.
Shang, Han Lin, & Hyndman, R. J. (2017). Grouped functional time series forecasting: An application to age-specific mortality rates. Journal of Computational and Graphical Statistics, 26(2), 330–343. https://doi.org/https://doi.org/10.1080/10618600.2016.1237877
Shang, H. L., & Xu, R. (2021). Change point detection for COVID-19 excess deaths in Belgium. Journal of Population Research, in press.
Shang, J., Ma, T., Xiao, C., & Sun, J. (2019). Pre-training of graph augmented transformers for medication recommendation. arXiv:1906.00346.
Sharpe, W. F. (1964). Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. The Journal of Finance, 19(3), 425. https://doi.org/10.2307/2977928
Shen, G., Jia, J., Nie, L., Feng, F., Zhang, C., Hu, T., … Zhu, W. (2017). Depression detection via harvesting social media: A multimodal dictionary learning solution. In IJCAI (pp. 3838–3844).
Shen, H. (2009). On modeling and forecasting time series of smooth curves. Technometrics, 51(3), 227–238.
Shen, H., & Huang, J. Z. (2005). Analysis of call centre arrival data using singular value decomposition. Applied Stochastic Models in Business and Industry, 21(3), 251–263.
Shen, H., & Huang, J. Z. (2008a). Forecasting time series of inhomogeneous Poisson processes with application to call center workforce management. The Annals of Applied Statistics, 2(2), 601–623.
Shen, H., & Huang, J. Z. (2008b). Interday forecasting and intraday updating of call center arrivals. Manufacturing & Service Operations Management, 10(3), 391–410.
Shen, H., Huang, J. Z., & Lee, C. (2007). Forecasting and dynamic updating of uncertain arrival rates to a call center. In 2007 IEEE international conference on service operations and logistics, and informatics (pp. 1–6). IEEE.
Sheng, C., Zhao, J., Leung, H., & Wang, W. (2013). Extended Kalman Filter Based Echo State Network for Time Series Prediction using MapReduce Framework. In 2013 IEEE 9th international conference on mobile ad-hoc and sensor networks (pp. 175–180). IEEE.
Shephard, N. (1994). Partial non-Gaussian state space. Biometrika, 81, 115–131.
Shi, Q., Yin, J., Cai, J., Cichocki, A., Yokota, T., Chen, L., … Zeng, J. (2020). Block Hankel Tensor ARIMA for Multiple Short Time Series Forecasting. In AAAI (pp. 5758–5766).
Shishkin, J., Young, A. H., & Musgrave, J. C. (1967). The X-11 variant of the Census II method seasonal adjustment program (No. 15). Bureau of the Census, US Department of Commerce.
Shumway, R. H., & Stoffer, D. S. (2017). Time series analysis and its applications: With R examples. Springer.
Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010). The Hadoop Distributed File System. In 2010 IEEE 26th symposium on mass storage systems and technologies (MSST) (pp. 1–10). IEEE.
Si, X.-S., Wang, W., Hu, C.-H., & Zhou, D.-H. (2011). Remaining useful life estimation – a review on the statistical data driven approaches. European Journal of Operational Research, 213(1), 1–14. https://doi.org/10.1016/j.ejor.2010.11.018
Sideratos, G., Ikonomopoulos, A., & Hatziargyriou, N. D. (2020). A novel fuzzy-based ensemble model for load forecasting using hybrid deep neural networks. Electric Power Systems Research, 178, 106025. https://doi.org/10.1016/j.epsr.2019.106025
Silva, E. G. de S. e, Legey, L. F., & Silva, E. A. de S. e. (2010). Forecasting oil price trends using wavelets and hidden Markov models. Energy Economics, 32(6), 1507–1519.
Silvapulle, P., & Moosa, I. A. (1999). The relationship between spot and futures prices: Evidence from the crude oil market. Journal of Futures Markets: Futures, Options, and Other Derivative Products, 19(2), 175–193.
Simon, H., & Sebastian, K.-H. (1987). Diffusion and advertising: The german telephone campaign. Management Science, 33(4), 451–466.
Simpson, E. H. (1951). The interpretation of interaction in contingency tables. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 13(2), 238–241.
Sims, C. (2002). Solving linear rational expectations models. Computational Economics, 20(1-2), 1–20.
Sims, C. A. (1980). Macroeconomics and Reality. Econometrica, 48(1), 1–48.
Sims, Christopher A. (2003). Implications of rational inattention. Journal of Monetary Economics, 50, 665–690.
Singer, P. W., & Friedman, A. (2014). Cybersecurity: What everyone needs to know. OUP USA.
Singleton, C., Reade, J. J., & Brown, A. (2019). Going with your Gut: The (In)accuracy of Forecast Revisions in a Football Score Prediction Game. Journal of Behavioral and Experimental Economics, 101502.
Sinnathamby, M. A., Whitaker, H., Coughlan, L., Bernal, J. L., Ramsay, M., & Andrews, N. (2020). All-cause excess mortality observed by age group and regions in the first wave of the COVID-19 pandemic in England. Eurosurveillance, 25(28), 2001239.
Sisson, S. A., Fan, Y., & Beaumont, M. (2019). Handbook of approximate Bayesian computation. Chapman & Hall/CRC.
Smets, F., Warne, A., & Wouters, R. (2014). Professional forecasters and real-time forecasting with a DSGE model. International Journal of Forecasting, 30(4), 981–995. https://doi.org/https://doi.org/10.1016/j.ijforecast.2014.03.018
Smets, F., & Wouters, R. (2007). Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach. American Economic Review, 97(3), 586–606. https://doi.org/10.1257/aer.97.3.586
Smith, B., Leimkuhler, J., & Darrow, R. (1992). Yield management at american airlines. Interfaces, 22(1), 8–31.
Smith, D. M., Scaife, A. A., Eade, R., Athanasiadis, P., Bellucci, A., Bethke, I., … Zhang, L. (2020). North Atlantic climate far more predictable than models imply. Nature, 583(7818), 796–800.
Smith, D. R. (2002). Markov-Switching and stochastic volatility diffusion models of Short-Term interest rates. Journal of Business & Economic Statistics, 20(2), 183–197. https://doi.org/10.1198/073500102317351949
Smith, J. C. (2011). The ins and outs of UK unemployment. The Economic Journal, 121, 402–444.
Smith, J., & Wallis, K. F. (2009a). A simple explanation of the forecast combination puzzle. Oxford Bulletin of Economics and Statistics, 71(3), 331–355.
Smith, J., & Wallis, K. F. (2009b). A simple explanation of the forecast combination puzzle. Oxford Bulletin of Economics and Etatistics, 71(3), 331–355. https://doi.org/10.1111/j.1468-0084.2008.00541.x
Smith, M. (2010). Modeling Longitudinal Data Using a Pair-Copula Decomposition of Serial Dependence. Journal of the American Statistical Association, 105(492), 1467–1479.
Smith, M. S., & Khaled, M. A. (2012). Estimation of copula models with discrete margins via Bayesian data augmentation. Journal of the American Statistical Association, 107(497), 290–303.
Smith, Michael Stanley, & Maneesoonthorn, W. (2018). Inversion copulas from nonlinear state space models with an application to inflation forecasting. International Journal of Forecasting, 34(3), 389–407.
Smith, Michael S., & Vahey, S. P. (2016). Asymmetric forecast densities for US macroeconomic variables from a gaussian copula model of cross-sectional and serial dependence. Journal of Business & Economic Statistics, 34(3), 416–434.
Smyl, S. (2020). A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting. International Journal of Forecasting, 36(1), 75–85. https://doi.org/10.1016/j.ijforecast.2019.03.017
Sniezek, J. A., & Henry, R. A. (1989). Accuracy and confidence in group judgment. Organizational Behavior and Human Decision Processes, 43(1), 1–28. https://doi.org/10.1016/0749-5978(89)90055-1
Snyder, R. D., Ord, J. K., & Beaumont, A. (2012). Forecasting the intermittent demand for slow-moving inventories: A modelling approach. International Journal of Forecasting, 28(2), 485–496.
Sobhani, M., Hong, T., & Martin, C. (2020). Temperature anomaly detection for electric load forecasting. International Journal of Forecasting, 36(2), 324–333.
Sobotka, T., & Beaujouan, É. (2018). Late motherhood in Low-Fertility countries: Reproductive intentions, trends and consequences. In D. Stoop (Ed.), Preventing age related fertility loss (pp. 11–29). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-14857-1\_2
Sobri, S., Koohi-Kamali, S., & Rahim, N. A. (2018). Solar photovoltaic generation forecasting methods: A review. Energy Conversion & Management, 156, 459–497. https://doi.org/10.1016/j.enconman.2017.11.019
Soebiyanto, R. P., Adimi, F., & Kiang, R. K. (2010). Modeling and predicting seasonal influenza transmission in warm regions using climatological parameters. PloS One, 5(3), e9450. https://doi.org/10.1371/journal.pone.0009450
Sohst, R. R., Tjaden, J., Valk, H. de, & Melde, S. (2020). The future of migration to Europe: A systematic review of the literature on migration scenarios and forecasts. Geneva: International Organization for Migration.
Sommer, B., Pinson, P., Messner, J. W., & Obst, D. (2020). Online distributed learning in wind power forecasting. International Journal of Forecasting.
Son, N., Yang, S., & Na, J. (2019). Hybrid forecasting model for Short-Term wind power prediction using modified long Short-Term memory. Energies, 12(20), 3901. https://doi.org/10.3390/en12203901
Song, H., & Li, G. (2021). Editorial: Tourism forecasting competition in the time of COVID-19. Annals Of Tourism Research, 103198. https://doi.org/10.1016/j.annals.2021.103198
Song, H., Qiu, R. T. R., & Park, J. (2019). A review of research on tourism demand forecasting: Launching the annals of tourism research curated collection on tourism demand forecasting. Annals Of Tourism Research, 75, 338–362. https://doi.org/10.1016/j.annals.2018.12.001
Song, H., Witt, S. F., & Li, G. (2008). The advanced econometrics of tourism demand. Routledge.
Sopadjieva, E., Dholakia, U. M., & Benjamin, B. (2017). A study of 46,000 shoppers shows that omnichannel retailing works. Harvard Business Review, Reprint H03D7A.
Sorensen, D. (2020). Strategic IBP: Driving profitable growth in complex global organizations. Foresight: The International Journal of Applied Forecasting, 56, 36–45.
Sorjamaa, A., Hao, J., Reyhani, N., Ji, Y., & Lendasse, A. (2007). Methodology for long-term prediction of time series. Neurocomputing, 70(16-18), 2861–2869.
Sorjamaa, A., & Lendasse, A. (2006). Time series prediction using dirrec strategy. In M. Verleysen (Ed.), ESANN, european symposium on artificial neural networks, european symposium on artificial neural networks (pp. 143–148). European Symposium on Artificial Neural Networks; Citeseer.
Sornette, D. (2003). Critical market crashes. Physics Reports, 378(1), 1–98. https://doi.org/10.1016/S0370-1573(02)00634-8
Soule, D., Grushka-Cockayne, Y., & Merrick, J. R. W. (2020). A heuristic for combining correlated experts. SSRN:3680229.
Souza, R. C., Marcato, A. L. M., Dias, B. H., & Oliveira, F. L. C. (2012). Optimal operation of hydrothermal systems with hydrological scenario generation through bootstrap and periodic autoregressive models. European Journal of Operational Research, 222(3), 606–615. https://doi.org/10.1016/j.ejor.2012.05.020
Soyer, R., & Tarimcilar, M. M. (2008). Modeling and analysis of call center arrival data: A Bayesian approach. Management Science, 54(2), 266–278.
Spagat, M., Mack, A., Cooper, T., & Kreutz, J. (2009). Estimating war deaths: An arena of contestation. The Journal of Conflict Resolution, 53(6), 934–950. https://doi.org/10.1177/0022002709346253
Sparkes, J. R., & McHugh, A. K. (1984). Awareness and use of forecasting techniques in British industry. Journal of Forecasting, 3(1), 37–42. https://doi.org/10.1002/for.3980030105
Spencer, J. (1904). On the graduation of the rates of sickness and mortality presented by the experience of the Manchester Unity of Oddfellows during the period 1893-97. Journal of the Institute of Actuaries, 38(4), 334–343.
Spiegelhalter, D., Pearson, M., & Short, I. (2011). Visualizing uncertainty about the future. Science, 333(6048), 1393–1400. https://doi.org/10.1126/science.1191181
Spiliotis, E., Assimakopoulos, V., & Makridakis, S. (2020). Generalizing the theta method for automatic forecasting. European Journal of Operational Research, 284(2), 550–558. https://doi.org/10.1016/j.ejor.2020.01.007
Spiliotis, E., Assimakopoulos, V., & Nikolopoulos, K. (2019). Forecasting with a hybrid method utilizing data smoothing, a variation of the theta method and shrinkage of seasonal factors. International Journal of Production Economics, 209, 92–102. https://doi.org/10.1016/j.ijpe.2018.01.020
Spiliotis, E., Kouloumos, A., Assimakopoulos, V., & Makridakis, S. (2020). Are forecasting competitions data representative of the reality? International Journal of Forecasting, 36(1), 37–53. https://doi.org/https://doi.org/10.1016/j.ijforecast.2018.12.007
Spiliotis, E., Petropoulos, F., & Assimakopoulos, V. (2019). Improving the forecasting performance of temporal hierarchies. PloS One, 14(10), e0223422. https://doi.org/10.1371/journal.pone.0223422
Spiliotis, E., Petropoulos, F., Kourentzes, N., & Assimakopoulos, V. (2020). Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption. Applied Energy, 261, 114339. https://doi.org/10.1016/j.apenergy.2019.114339
Spiliotis, E., Raptis, A., & Assimakopoulos, V. (2015). Off-the-shelf vs. Customized forecasting support systems. Foresight: The International Journal of Applied Forecasting, Issue 43, 42–48.
Spithourakis, G., Petropoulos, F., Babai, M. Z., Nikolopoulos, K., & Assimakopoulos, V. (2011). Improving the performance of popular supply chain forecasting techniques. Supply Chain Forum, an International Journal, 12(4), 16–25.
Spithourakis, G., Petropoulos, F., Nikolopoulos, K., & Assimakopoulos, V. (2014). A systemic view of ADIDA framework. IMA Journal of Management Mathematics, 25, 125–137.
Squire, P. (1988). Why the 1936 literary digest poll failed. Public Opinion Quarterly, 52(1), 125–133.
Sridhar, S., & Govindarasu, M. (2014). Model-based attack detection and mitigation for automatic generation control. IEEE Transactions on Smart Grid, 5(2), 580–591.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56), 1929–1958.
Stadlober, E., Hormann, S., & Pfeiler, B. (2018). Quality and performance of a PM10 daily forecasting model. Atmospheric Environment, 42, 1098–1109.
Stanford NLP Group. (2013). Code for deeply moving: Deep learning for sentiment analysis. https://nlp.stanford.edu/sentiment/code.html.
Staszewska‐Bystrova, A. (2011). Bootstrap prediction bands for forecast paths from vector autoregressive models. Journal of Forecasting, 30(8), 721–735.
Steckley, S. G., Henderson, S. G., & Mehrotra, V. (2005). Performance measures for service systems with a random arrival rate. In Proceedings of the winter simulation conference, 2005. IEEE.
Steurer, J. (2011). The delphi method: An efficient procedure to generate knowledge. Skeletal Radiology, 40(8), 959–961. https://doi.org/10.1007/s00256-011-1145-z
Stillwell, J., & Clarke, M. (Eds.). (2011). Population dynamics and projection methods. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8930-4
Stock, James H., & Watson, M. W. (1998). A comparison of linear and nonlinear univariate models for forecasting macroeconomic time series (NBER Working Papers No. 6607). National Bureau of Economic Research, Inc.
Stock, James H., & Watson, M. W. (2002). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association, 97(460), 1167–1179.
Stock, J. H., & Watson, M. W. (2012). Generalized shrinkage methods for forecasting using many predictors. Journal of Business & Economic Statistics, 30, 481–493.
Stone, M. (1961). The opinion pool. Annals of Mathematical Statistics, 32(4), 1339–1342.
Stone, Mervyn. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 36(2), 111–133.
Strähl, C., & Ziegel, J. (2017). Cross-calibration of probabilistic forecasts. Electronic Journal of Statistics, 11(1), 608–639.
Strauch, R., Hallerberg, M., & Hagen, J. (2004). Budgetary forecasts in Europe – the track record of stability and convergence programmes. ECB Working Paper 307.
Strijbosch, L. W. G., & Moors, J. J. A. (2005). The impact of unknown demand parameters on (R,S)-inventory control performance. European Journal of Operational Research, 162(3), 805–815.
Su, Y.-K., & Wu, C.-C. (2014). A new range-based regime-switching dynamic conditional correlation model for minimum-variance hedging. Journal of Mathematical Finance, 04(03), 207–219. https://doi.org/10.4236/jmf.2014.43018
Sugeno, M. (1985). Industrial applications of fuzzy control. Elsevier Science Inc.
Sun, J., Sun, Y., Zhang, X., & McCabe, B. (2021). Model averaging of integer-valued autoregressive model with covariates. Https://Ssrn.com.
Sun, S., Sun, Y., Wang, S., & Wei, Y. (2018). Interval decomposition ensemble approach for crude oil price forecasting. Energy Economics, 76, 274–287.
Sundquist, E. T., & Keeling, R. F. (2009). The Mauna Loa carbon dioxide record: Lessons for long-term earth observations. Geophysical Monograph Series, 183, 27–35.
Surowiecki, J. (2005). The wisdom of crowds: Why the many are smarter than the few (New). Abacus.
Svensson, A., Holst, J., Lindquist, R., & Lindgren, G. (1996). Optimal prediction of catastrophes in autoregressive Moving‐Average processes. Journal of Time Series Analysis, 17(5), 511–531. https://doi.org/10.1111/j.1467-9892.1996.tb00291.x
Svetunkov, I., & Boylan, J. E. (2020). State-space ARIMA for supply-chain forecasting. International Journal of Production Research, 58(3), 818–827.
Swanson, N. R., & Xiong, W. (2018). Big data analytics in economics: What have we learned so far, and where should we go from here? Canadian Journal of Economics, 51(3), 695–746.
Sweeney, C., Bessa, R. J., Browell, J., & Pinson, P. (2019). The future of forecasting for renewable energy. Wiley Interdisciplinary Reviews: Energy and Environment. https://doi.org/10.1002/wene.365
Syntetos, Aris A., Babai, M. Z., & Luo, S. (2015). Forecasting of compound Erlang demand. Journal of the Operational Research Society, 66(12), 2061–2074. https://doi.org/10.1057/jors.2015.27
Syntetos, Aris A., Babai, Z., Boylan, J. E., Kolassa, S., & Nikolopoulos, K. (2016). Supply chain forecasting: Theory, practice, their gap and the future. European Journal of Operational Research, 252(1), 1–26. https://doi.org/10.1016/j.ejor.2015.11.010
Syntetos, A. A., & Boylan, J. E. (2001). On the bias of intermittent demand estimates. International Journal of Production Economics, 71(1), 457–466. https://doi.org/10.1016/S0925-5273(00)00143-2
Syntetos, Aris A., & Boylan, J. E. (2005). The accuracy of intermittent demand estimates. International Journal of Forecasting, 21(2), 303–314. https://doi.org/10.1016/j.ijforecast.2004.10.001
Syntetos, Aris A., & Boylan, J. E. (2006). On the stock control performance of intermittent demand estimators. International Journal of Production Economics, 103(1), 36–47. https://doi.org/10.1016/j.ijpe.2005.04.004
Syntetos, A. A., Boylan, J. E., & Croston, J. D. (2005). On the categorization of demand patterns. Journal of the Operational Research Society, 56(5), 495–503. https://doi.org/10.1057/palgrave.jors.2601841
Syntetos, Aris A., Kholidasari, I., & Naim, M. M. (2016). The effects of integrating management judgement into OUT levels: In or out of context? European Journal of Operational Research, 249(3), 853–863.
Syntetos, Aris A., Nikolopoulos, K., Boylan, J. E., Fildes, R., & Goodwin, P. (2009). The effects of integrating management judgement into intermittent demand forecasts. International Journal of Production Economics, 118(1), 72–81. https://doi.org/10.1016/j.ijpe.2008.08.011
Syntetos, Aris A., Zied Babai, M., & Gardner, E. S. (2015). Forecasting intermittent inventory demands: Simple parametric methods vs. bootstrapping. Journal of Business Research, 68(8), 1746–1752. https://doi.org/10.1016/j.jbusres.2015.03.034
Syring, N., & Martin, R. (2020). Gibbs posterior concentration rates under sub-exponential type losses. arXiv:2012.04505.
Szozda, N. (2010). Analogous forecasting of products with a short life cycle. Decision Making in Manufacturing and Services, 4(1-2), 71–85.
Taillardat, M., Mestre, O., Zamo, M., & Naveau, P. (2016). Calibrated ensemble forecasts using quantile regression forests and ensemble model output statistics. Monthly Weather Review, 144(6), 2375–2393.
Talagala, P. D., Hyndman, R. J., Leigh, C., Mengersen, K., & Smith-Miles, K. (2019). A feature-based procedure for detecting technical outliers in water-quality data from in situ sensors. Water Resources Research, 55(11), 8547–8568.
Talagala, P. D., Hyndman, R. J., & Smith-Miles, K. (2020). Anomaly detection in high dimensional data. Journal of Computational and Graphical Statistics, in press, 1–32.
Talagala, P. D., Hyndman, R. J., Smith-Miles, K., Kandanaarachchi, S., & Muñoz, M. A. (2020). Anomaly detection in streaming nonstationary temporal data. Journal of Computational and Graphical Statistics, 29(1), 13–27.
Talagala, T. (2015). Distributed lag nonlinear modelling approach to identify relationship between climatic factors and dengue incidence in colombo district, sri lanka. Epidemiology, Biostatistics and Public Health, 12(4).
Talagala, T. S., Hyndman, R. J., & Athanasopoulos, G. (2018). Meta-learning how to forecast time series (Working paper No. 6/18). Monash University, Department of Econometrics; Business Statistics.
Talavera-Llames, R. L., Pérez-Chacón, R., Martı́nez-Ballesteros, M., Troncoso, A., & Martı́nez-Álvarez, F. (2016). A nearest neighbours-based algorithm for big time series data forecasting. In International conference on hybrid artificial intelligence systems (pp. 174–185). Springer.
Taleb, Nassim Nicholas. (2008). The black swan: The impact of the highly improbable (New Edition). Penguin.
Taleb, Nassim Nicholas. (2020). Statistical consequences of fat tails: Real world preasymptotics, epistemology, and applications. STEM Academic Press.
Taleb, N. N., Bar-Yam, Y., & Cirillo, P. (2020). On single point forecasts for fat tailed variables. International Journal of Forecasting. https://doi.org/10.1016/j.ijforecast.2020.08.008.
Tam Cho, W. K. (1998). Iff the assumption fits...: A comment on the king ecological inference solution. Political Analysis, 7, 143–163. https://doi.org/10.1093/pan/7.1.143
Tan, B. K., Panagiotelis, A., & Athanasopoulos, G. (2019). Bayesian inference for the one-factor copula model. Journal of Computational and Graphical Statistics, 28(1), 155–173.
Tan, P.-N., Steinbach, M., & Kumar, V. (2005). Introduction to data mining, (first edition). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.
Tandberg, D., Easom, L. J., & Qualls, C. (1995). Time series forecasts of poison center call volume. Journal of Toxicology: Clinical Toxicology, 33(1), 11–18.
Tanir, O., & Booth, R. J. (1999). Call center simulation in Bell Canada. In WSC’99. 1999 winter simulation conference proceedings.’simulation-a bridge to the future’(cat. No. 99CH37038) (Vol. 2, pp. 1640–1647). IEEE.
Tarun, G., & Bryan, K. (2019). Factor momentum everywhere. Journal of Portfolio Management, 45(3), 13–36. Journal Article. https://doi.org/10.3905/jpm.2019.45.3.013
Tashman, Leonard J. (2000). Out-of-sample tests of forecasting accuracy: An analysis and review. International Journal of Forecasting, 16(4), 437–450.
Tashman, Leonard J., & Leach, M. L. (1991). Automatic forecasting software: A survey and evaluation. International Journal of Forecasting, 7(2), 209–230. https://doi.org/http://dx.doi.org/10.1016/0169-2070(91)90055-Z
Tay, A. S., & Wallis, K. F. (2000). Density forecasting: A survey. Journal of Forecasting, 19(4), 235–254. https://doi.org/10.1002/1099-131X(200007)19:4<235::AID-FOR772>3.0.CO;2-L
Taylor, J. M. (1986). The retransformed mean after a fitted power transformation. Journal of the American Statistical Association, 81(393), 114–118.
Taylor, James W. (2003a). Exponential smoothing with a damped multiplicative trend. International Journal of Forecasting, 19(4), 715–725. https://doi.org/10.1016/S0169-2070(03)00003-7
Taylor, James W. (2003b). Short-term electricity demand forecasting using double seasonal exponential smoothing. Journal of the Operational Research Society, 54(8), 799–805.
Taylor, James W. (2007). Forecasting daily supermarket sales using exponentially weighted quantile regression. European Journal of Operational Research, 178(1), 154–167. https://doi.org/https://doi.org/10.1016/j.ejor.2006.02.006
Taylor, James W. (2008). A comparison of univariate time series methods for forecasting intraday arrivals at a call center. Management Science, 54(2), 253–265.
Taylor, James W. (2010). Exponentially weighted methods for forecasting intraday time series with multiple seasonal cycles. International Journal of Forecasting, 26(4), 627–646.
Taylor, James W. (2012). Density forecasting of intraday call center arrivals using models based on exponential smoothing. Management Science, 58(3), 534–549.
Taylor, James W., & Bunn, D. W. (1999). A quantile regression approach to generating prediction intervals. Management Science, 45(2), 131–295.
Taylor, J. W., & Jeon, J. (2018). Probabilistic forecasting of wave height for offshore wind turbine maintenance. European Journal of Operational Research, 267(3). https://doi.org/10.1016/j.ejor.2017.12.021
Taylor, James W., McSharry, P. E., & Buizza, R. (2009). Wind Power Density Forecasting Using Ensemble Predictions and Time Series Models. IEEE Transactions on Energy Conversion, 24(3), 775–782. https://doi.org/10.1109/TEC.2009.2025431
Taylor, James W., & Snyder, R. D. (2012). Forecasting intraday time series with multiple seasonal cycles using parsimonious seasonal exponential smoothing. Omega, 40(6), 748–757.
Taylor, M. P., & Peel, D. A. (2000). Nonlinear adjustment, long-run equilibrium and exchange rate fundamentals. Journal of International Money and Finance, 19(1), 33–53.
Taylor, P. F., & Thomas, M. E. (1982). Short term forecasting: Horses for courses. Journal of the Operational Research Society, 33(8), 685–694. https://doi.org/10.1057/jors.1982.157
Taylor, S. (1986). Modelling financial time series. Wiley.
Taylor, S. J., & Letham, B. (2018). Forecasting at scale. The American Statistician, 72(1), 37–45.
Tenti, P. (1996). Forecasting foreign exchange rates using recurrent neural networks. Applied Artificial Intelligence, 10(6), 567–582. https://doi.org/10.1080/088395196118434
Teräsvirta, T. (1994). Specification, estimation, and evaluation of smooth transition autoregressive models. Journal of the American Statistical Association, 89(425), 208–218. https://doi.org/10.1080/01621459.1994.10476462
Teräsvirta, T., Tjostheim, D., & Granger, C. W. J. (2010). Modelling nonlinear economic time series. OUP Oxford.
Teunter, R. H., & Duncan, L. (2009). Forecasting intermittent demand: A comparative study. Journal of the Operational Research Society, 60(3), 321–329. https://doi.org/10.1057/palgrave.jors.2602569
Teunter, Ruud H., Syntetos, A. A., & Zied Babai, M. (2011). Intermittent demand: Linking forecasting to inventory obsolescence. European Journal of Operational Research, 214(3), 606–615. https://doi.org/10.1016/j.ejor.2011.05.018
Tewari, D. D. (1990). Energy-price impacts modelling in the agriculture sector. Energy Economics, 12(2), 147–158. https://doi.org/10.1016/0140-9883(90)90049-L
Thaler, R. H., & Sunstein, C. R. (2009). Nudge: Improving decisions about health, wealth, and happiness. Penguin Books.
The Conference Board. (2020). Global business cycle indicators. https://conference-board.org/data/bcicountry.cfm?cid=1.
The RFE Working Group Report. (2015). Risk in the front end of megaprojects. European Cooperation in Science; Technology.
Theocharis, Z., & Harvey, N. (2019). When does more mean worse? Accuracy of judgmental forecasting is nonlinearly related to length of data series. Omega, 87, 10–19. https://doi.org/10.1016/j.omega.2018.11.009
Theocharis, Z., Smith, L. A., & Harvey, N. (2018). The influence of graphical format on judgmental forecasting accuracy: Lines versus points. Futures & Foresight Science, 13, e7. https://doi.org/10.1002/ffo2.7
Theodosiou, M. (2011). Disaggregation & aggregation of time series components: A hybrid forecasting approach using generalized regression neural networks and the theta method. Neurocomputing, 74(6), 896–905. https://doi.org/10.1016/j.neucom.2010.10.013
Thomakos, D. D., & Nikolopoulos, K. (2015). Forecasting multivariate time series with the theta method: Multivariate theta method. Journal of Forecasting, 34(3), 220–229. https://doi.org/10.1002/for.2334
Thomakos, D., & Nikolopoulos, K. (2012). Fathoming the theta method for a unit root process. IMA Journal of Management Mathematics, 25(1), 105–124. https://doi.org/10.1093/imaman/dps030
Thomé, Antonio Márcio Tavares, Hollmann, R. L., & Scavarda do Carmo, L. F. R. R. (2014). Research synthesis in collaborative planning forecast and replenishment. Industrial Management & Data Systems, 114(6), 949–965. https://doi.org/10.1108/IMDS-03-2014-0085
Thomé, Antônio Márcio Tavares, Scavarda, L. F., Fernandez, N. S., & Scavarda, A. J. (2012). Sales and operations planning: A research synthesis. International Journal of Production Economics, 138(1), 1–13.
Thomson, W., Jabbari, S., Taylor, A. E., Arlt, W., & Smith, D. J. (2019). Simultaneous parameter estimation and variable selection via the logit-normal continuous analogue of the spike-and-slab prior. Journal of the Royal Society Interface, 16(150).
Thorarinsdottir, T. L., Scheuerer, M., & Heinz, C. (2016). Assessing the calibration of high-dimensional ensemble forecasts using rank histograms. Journal of Computational and Graphical Statistics, 25(1), 105–122.
Thorarinsdottir, T. L., & Schuhen, N. (2018). Verification: Assessment of calibration and accuracy. In Statistical postprocessing of ensemble forecasts (pp. 155–186). Elsevier.
Tian, F., Yang, K., & Chen, L. (2017). Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity. International Journal of Forecasting, 33(1), 132–152. https://doi.org/10.1016/j.ijforecast.2016.08.002
Tian, J., & Anderson, H. M. (2014). Forecast combinations under structural break uncertainty. International Journal of Forecasting, 30(1), 161–175.
Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 58, 267–288.
Timmermann, A. (2000). Moments of Markov switching models. Journal of Econometrics, 96(1), 75–111.
Timmermann, A. (2006). Forecast combinations. In G. Elliott, C. W. J. Granger, & A. Timmermann (Eds.), Handbook of economic forecasting (Vol. 1, pp. 135–196). Amsterdam: Elsevier.
Timmermann, A., & Zhu, Y. (2019). Comparing forecasting performance with panel data. SSRN:3380755.
Tiwari, A. K., Nasreen, S., Shahbaz, M., & Hammoudeh, S. (2020). Time-frequency causality and connectedness between international prices of energy, food, industry, agriculture and metals. Energy Economics, 85, 104529.
Todini, E. (1991). Coupling real-time forecasting in the aswan dam reservoir management. In Workshop on monitoring, forecasting and simulation of river basins for agricultural production. Rome: Land; Water Development Division.
Todini, E. (1999). Using phase-space modelling for inferring forecasting uncertainty in non-linear stochastic decision schemes. Journal of Hydroinformatics, 1(2), 75–82.
Todini, E. (2008). A model conditional processor to assess predictive uncertainty in flood forecasting. International Journal of River Basin Management, 6(2), 123–137. https://doi.org/10.1080/15715124.2008.9635342
Todini, E. (2016). Predictive uncertainty assessment and decision making. In V. P. Singh (Ed.), Handbook of applied hydrology (pp. 26.1–26.16). New York: McGraw Hill.
Todini, Ezio. (2017). Flood forecasting and decision making in the new millennium. Where are we? Water Resources Management, 31(10), 3111–3129. https://doi.org/10.1007/s11269-017-1693-7
Todini, Ezio. (2018). Paradigmatic changes required in water resources management to benefit from probabilistic forecasts. Water Security, 3, 9–17. https://doi.org/10.1016/j.wasec.2018.08.001
Toktay, L. B. (2003). Forecasting product returns. In V. D. R. Guide Jr. & L. N. van Wassenhove (Eds.), Business aspects of closed-loop supply chains (pp. 203–209). Pittsburgh: Carnegie Mellon University Press.
Toktay, L. Beril, Wein, L. M., & Zenios, S. A. (2000). Inventory management of remanufacturable products. Management Science, 46(11), 1412–1426.
Tolman, H. L. (2008). A mosaic approach to wind wave modeling. Ocean Modelling, 25(1-2), 35–47.
Tong, H. (1978). On a threshold model. In C. Chen (Ed.), Pattern recognition and signal processing (pp. 575–586). Netherlands: Sijthoff & Noordhoff.
Tong, H. (1990). Non-linear time series: A dynamical system approach. Clarendon Press.
Toth, Z., & Buizza, R. (2019). Weather forecasting: What sets the forecast skill horizon? In Sub-seasonal to seasonal prediction (pp. 17–45). Elsevier.
Touzani, S., Granderson, J., & Fernandes, S. (2018). Gradient boosting machine for modeling the energy consumption of commercial buildings. Energy and Buildings, 158, 1533–1543.
Tracy, M., Cerdá, M., & Keyes, K. M. (2018). Agent-based modeling in public health: Current applications and future directions. Annual Review of Public Health, 39, 77–94.
Tran, M.-N., Nott, D. J., & Kohn, R. (2017). Variational Bayes with intractable likelihood. Journal of Computational and Graphical Statistics, 26(4), 873–882.
Tran, T., Phung, D., Luo, W., Harvey, R., Berk, M., & Venkatesh, S. (2013). An integrated framework for suicide risk prediction. In Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1410–1418).
Trapero, J. R., Kourentzes, N., & Fildes, R. (2015). On the identification of sales forecasting models in the presence of promotions. Journal of the Operational Research Society, 66(2), 299–307.
Trapero, J. R., Pedregal, D. J., Fildes, R., & Kourentzes, N. (2013). Analysis of judgmental adjustments in the presence of promotions. International Journal of Forecasting, 29(2), 234–243.
Triguero, I., Peralta, D., Bacardit, J., Garcı́a, S., & Herrera, F. (2015). MRPR: A MapReduce solution for prototype reduction in big data classification. Neurocomputing, 150, 331–345.
Trivedi, P. K., & Zimmer, D. M. (2007). Copula modeling: An introduction for practitioners. Now Publishers Inc.
Tsai, S.-B., Xue, Y., Zhang, J., Chen, Q., Liu, Y., Zhou, J., & Dong, W. (2017). Models for forecasting growth trends in renewable energy. Renewable and Sustainable Energy Reviews, 77, 1169–1178. https://doi.org/10.1016/j.rser.2016.06.001
Tsay, R. S. (1986). Time series model specification in the presence of outliers. Journal of the American Statistical Association, 81(393), 132–141. https://doi.org/10.2307/2287980
Tse, Y. K., & Tsui, A. K. C. (2002). A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model With Time-Varying Correlations. Journal of Business & Economic Statistics, 20(3), 351–362. https://doi.org/10.1198/073500102288618496
Tsyplakov, A. (2013). Evaluation of probabilistic forecasts: Proper scoring rules and moments. SSRN:2236605.
Tu, Y., Ball, M., & Jank, W. (2008). Estimating flight departure delay distributions – a statistical approach with long-term trend and short-term pattern. Journal of the American Statistical Association, 103(481), 112–125.
Tuljapurkar, S., & Boe, C. (1999). Validation, probability-weighted priors, and information in stochastic forecasts. International Journal of Forecasting, 15(3), 259–271. https://doi.org/10.1016/S0169-2070(98)00082-X
Turkman, M. A. A., & Turkman, K. F. (1990). Optimal alarm systems for autoregressive processes: A Bayesian approach. Computational Statistics & Data Analysis, 10(3), 307–314. https://doi.org/10.1016/0167-9473(90)90012-7
Turkmen, A. C., Wang, Y., & Januschowski, T. (2019). Intermittent demand forecasting with deep renewal processes. arXiv:1911.10416.
Turner, D. S. (1990). The role of judgement in macroeconomic forecasting. Journal of Forecasting, 9(4), 315–345.
Turner, L., & Boulhol, H. (2011). Recent trends and structural breaks in the US and EU15 labour productivity growth. Applied Economics, 43(30), 4769–4784.
Turner, R., & Zolin, R. (2012). Forecasting success on large projects: Developing reliable scales to predict multiple perspectives by multiple stakeholders over multiple time frames. Project Management Journal, 43(5), 87–99. https://doi.org/10.1002/pmj.21289
Turnovsky, S. J., & Wachter, M. L. (1972). A Test of the “Expectations Hypothesis” Using Directly Observed Wage and Price Expectations. The Review of Economics and Statistics, 54(1), 47–54.
Twyman, M., Harvey, N., & Harries, C. (2008). Trust in motives, trust in competence: Separate factors determining the effectiveness of risk communication. Judgment and Decision Making, 3(1), 111–120.
Tych, W., Pedregal, D. J., Young, P. C., & Davies, J. (2002). An unobserved component model for multi-rate forecasting of telephone call demand: The design of a forecasting support system. International Journal of Forecasting, 18(4), 673–695.
Tziafetas, G. (1986). Estimation of the voter transition matrix. Optimization, 17(2), 275–279. https://doi.org/10.1080/02331938608843128
Uematsu, H., Kunisawa, S., Sasaki, N., Ikai, H., & Imanaka, Y. (2014). Development of a risk-adjusted in-hospital mortality prediction model for community-acquired pneumonia: A retrospective analysis using a Japanese administrative database. BMC Pulmonary Medicine, 14(1), 203.
Ugurlu, U., Oksuz, I., & Tas, O. (2018). Electricity price forecasting using recurrent neural networks. Energies, 11(5), 1255.
Ülkümen, G., Fox, C. R., & Malle, B. F. (2016). Two dimensions of subjective uncertainty: Clues from natural language. Journal of Experimental Psychology: General, 145(10), 1280–1297. https://doi.org/10.1037/xge0000202
United Nations Development Programme. (2019). Population facts no. 2019/6, December 2019: How certain are the United Nations global population projections? (No. 2019/6). Department of Economic; Social Affairs, Population Division.
Unwin, A. (2019). Multivariate outliers and the O3 Plot. Journal of Computational and Graphical Statistics, 28(3), 635–643.
Vaks, A., Mason, A. J., Breitenbach, S. F. M., & al., et. (2019). Palaeoclimate evidence of vulnerable permafrost during times of low sea ice. Nature, 577, 221–225.
Van de Ven, A., & Delbeco, A. L. (1971). Nominal versus interacting group processes for committee Decision-Making effectiveness. Academy of Management Journal. Academy of Management, 14(2), 203–212. https://doi.org/10.2307/255307
Van den Broeke, M., De Baets, S., Vereecke, A., Baecke, P., & Vanderheyden, K. (2019). Judgmental forecast adjustments over different time horizons. Omega, 87, 34–45. https://doi.org/10.1016/j.omega.2018.09.008
Van der Auweraer, S., & Boute, R. (2019). Forecasting spare part demand using service maintenance information. International Journal of Production Economics, 213, 138–149. https://doi.org/10.1016/j.ijpe.2019.03.015
Van Dijk, D., Franses, P. H., & Lucas, A. (1999). Testing for smooth transition nonlinearity in the presence of outliers. Journal of Business & Economic Statistics, 17(2), 217–235. https://doi.org/10.1080/07350015.1999.10524812
Van Heerde, H. J., Leeflang, P. S., & Wittink, D. R. (2002). How promotions work: SCAN* PRO-based evolutionary model building. Schmalenbach Business Review, 54(3), 198–220.
Van Reeth, D. (2019). Forecasting tour de france TV audiences: A multi-country analysis. International Journal of Forecasting, 35(2), 810–821.
Van Schaeybroeck, B., & Vannitsem, S. (2018). Postprocessing of long-range forecasts. In S. Vannitsem, D. S. Wilks, & J. W. Messner (Eds.), Statistical postprocessing of ensemble forecasts (pp. 267–290). Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/b978-0-12-812372-0.00010-8
Vannitsem, S., Wilks, D. S., & Messner, J. (2018). Statistical postprocessing of ensemble forecasts. Elsevier.
Varian, H. R. (2014). Big data: New tricks for econometrics. Journal of Economic Perspectives, 28(2), 3–28.
Vaughan Williams, L., & Reade, J. J. (2016). Prediction Markets, Social Media and Information Efficiency. Kyklos, 69(3), 518–556.
Venkatramanan, S., Lewis, B., Chen, J., Higdon, D., Vullikanti, A., & Marathe, M. (2018). Using data-driven agent-based models for forecasting emerging infectious diseases. Epidemics, 22, 43–49.
Venter, J. H., De Jongh, P. J., & Griebenow, G. (2005). NIG-Garch models based on open, close, high and low prices. South African Statistical Journal, 39(2), 79–101.
Verhulst, P. F. (1838). Notice sur la loi que la population suit dans son accroissement. Correspondance Mathématique Et Physique, 10, 113–121.
Verhulst, P. F. (1845). Recherches mathématiques sur la loi d’accroissement de la population. Nouveaux mémoires de l’Académie Royale Des Sciences Et Belles-Lettres de Bruxelles, 18, 14–54.
Vermue, M., Seger, C. R., & Sanfey, A. G. (2018). Group-based biases influence learning about individual trustworthiness. Journal of Experimental Social Psychology, 77, 36–49. https://doi.org/10.1016/j.jesp.2018.04.005
Veronesi, P., & Yared, F. (1999). Short and long horizon term and inflation risk premia in the US term structure: Evidence from an integrated model for nominal and real bond prices under regime shifts. CRSP Working Paper, 508.
Vestergaard, L. S., Nielsen, J., Richter, L., Schmid, D., Bustos, N., Braeye, T., … Mølbak, K. (2020). Excess all-cause mortality during the COVID-19 pandemic in Europe–preliminary pooled estimates from the EuroMOMO network, March to April 2020. Eurosurveillance, 25(26), 2001214.
Vile, J. L., Gillard, J. W., Harper, P. R., & Knight, V. A. (2012). Predicting ambulance demand using singular spectrum analysis. Journal of the Operational Research Society, 63(11), 1556–1565. https://doi.org/10.1057/jors.2011.160
Villegas, M. A., & Pedregal, D. J. (2018). Supply chain decision support systems based on a novel hierarchical forecasting approach. Decision Support Systems, 114, 29–36.
Vipul, & Jacob, J. (2007). Forecasting performance of extreme-value volatility estimators. Journal of Futures Markets, 27(11), 1085–1105. https://doi.org/10.1002/fut.20283
Vitart, F., Robertson, A. W., & Anderson, D. L. T. (2012). Subseasonal to seasonal prediction project: Bridging the gap between weather and climate. Bulletin of the World Meteorological Organization, 61(2), 23.
Vlahogianni, E. I., Golias, J. C., & Karlaftis, M. G. (2004). Short-term traffic forecasting: Overview of objectives and methods. Transport Reviews, 24(5), 533–557.
Vlahogianni, E. I., Karlaftis, M. G., & Golias, J. C. (2014). Short-term traffic forecasting: Where we are and where we’re going. Transportation Research Part C: Emerging Technologies, 43, 3–19.
Volterra, V. (1926a). Fluctuations in the abundance of a species considered mathematically. Nature, 118, 558–60.
Volterra, V. (1926b). Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Memoria Della Reale Accademia Nazionale Dei Lincei, 2, 31–113.
Wakefield, J. (2004). Ecological inference for 2x2 tables (with discussion). Journal of the Royal Statistical Society, Series A, 167(3), 385–445. https://doi.org/10.1111/j.1467-985x.2004.02046.x
Wallentin, G., Kaziyeva, D., & Reibersdorfer-Adelsberger, E. (2020). COVID-19 intervention scenarios for a long-term disease management. International Journal of Health Policy and Management.
Wallström, P., & Segerstedt, A. (2010). Evaluation of forecasting error measurements and techniques for intermittent demand. International Journal of Production Economics, 128(2), 625–636. https://doi.org/10.1016/j.ijpe.2010.07.013
Walton, D., Reed, C., & Macagno, F. (2008). Argumentation schemes. Cambridge University Press.
Wang, C., Jiang, B., Fan, J., Wang, F., & Liu, Q. (2014). A study of the dengue epidemic and meteorological factors in Guangzhou, China, by using a zero-inflated poisson regression model. Asia Pacific Journal of Public Health, 26(1), 48–57.
Wang, C.-N., Nhieu, N.-L., Chung, Y.-C., & Pham, H.-T. (2021). Multi-objective optimization models for sustainable perishable intermodal multi-product networks with delivery time window. Mathematics, 9(4), 379.
Wang, Hansheng, Li, B., & Leng, C. (2009). Shrinkage tuning parameter selection with a diverging number of parameters. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 71(3), 671–683.
Wang, Hao, & Yeung, D.-Y. (2016). A survey on Bayesian deep learning. arXiv:1604.01662.
Wang, Jue, Wang, Z., Li, X., & Zhou, H. (2019). Artificial bee colony-based combination approach to forecasting agricultural commodity prices. International Journal of Forecasting. https://doi.org/10.1016/j.ijforecast.2019.08.006
Wang, Jianzhou, Yang, W., Du, P., & Niu, T. (2018). A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm. Energy Conversion and Management, 163, 134–150.
Wang, Jianzhou, Yang, W., Du, P., & Niu, T. (2020). Outlier-robust hybrid electricity price forecasting model for electricity market management. Journal of Cleaner Production, 249, 119318. https://doi.org/10.1016/j.jclepro.2019.119318
Wang, P., Liu, B., & Hong, T. (2016). Electric load forecasting with recency effect: A big data approach. International Journal of Forecasting, 32(3), 585–597.
Wang, S. L., & McPhail, L. (2014). Impacts of energy shocks on US agricultural productivity growth and commodity prices—a structural VAR analysis. Energy Economics, 46(C), 435–444.
Wang, Weina, Pedrycz, W., & Liu, X. (2015). Time series long-term forecasting model based on information granules and fuzzy clustering. Engineering Applications of Artificial Intelligence, 41, 17–24. https://doi.org/10.1016/j.engappai.2015.01.006
Wang, Wei, Rothschild, D., Goel, S., & Gelman, A. (2015). Forecasting elections with non-representative polls. International Journal of Forecasting, 31(3), 980–991. https://doi.org/10.1016/j.ijforecast.2014.06.001
Wang, Wenbin, & Syntetos, A. A. (2011). Spare parts demand: Linking forecasting to equipment maintenance. Transportation Research Part E: Logistics and Transportation Review, 47(6), 1194–1209.
Wang, Xiaoqian, Kang, Y., Hyndman, R. J., & Li, F. (2020). Distributed ARIMA models for ultra-long time series. arXiv:2007.09577.
Wang, Xiaoqian, Kang, Y., Petropoulos, F., & Li, F. (2021). The uncertainty estimation of feature-based forecast combinations. Journal of the Operational Research Society.
Wang, Xun, & Petropoulos, F. (2016). To select or to combine? The inventory performance of model and expert forecasts. International Journal of Production Research, 54(17), 5271–5282.
Wang, Xiaozhe, Smith-Miles, K., & Hyndman, R. J. (2006). Characteristic-based clustering for time series data. Data Mining and Knowledge Discovery, 13(3), 335–364.
Wang, Xiaozhe, Smith-Miles, K., & Hyndman, R. J. (2009). Rule induction for forecasting method selection: Meta-learning the characteristics of univariate time series. Neurocomputing, 72(10-12), 2581–2594.
Wang, Y., Smola, A., Maddix, D., Gasthaus, J., Foster, D., & Januschowski, T. (2019). Deep factors for forecasting. In International Conference on Machine Learning (pp. 6607–6617).
Wang, Zhao, Wang, W., Liu, C., Wang, Z., & Hou, Y. (2017). Probabilistic forecast for multiple wind farms based on regular vine copulas. IEEE Transactions on Power Systems, 33(1), 578–589.
Wang, Zeyu, Wang, Y., Zeng, R., Srinivasan, R. S., & Ahrentzen, S. (2018). Random forest based hourly building energy prediction. Energy and Buildings, 171, 11–25.
Warne, A., Coenen, G., & Christoffel, K. (2010). Forecasting with DSGE models (Working Paper Series No. 1185). European Central Bank.
Wasserstein, R. L., & Lazar, N. A. (2016). The ASA statement on p-values: Context, process, and purpose. The American Statistician, 70(2), 129–133.
Weatherford, L., Gentry, T., & Wilamowski, B. (2003). Neural network forecasting for airlines: A comparative analysis. Journal of Revenue and Pricing Management, 1(4), 319–331.
Weaver, W. T. (1971). The Delphi forecasting method. The Phi Delta Kappan, 52(5), 267–271.
Webby, R., O’Connor, M., & Edmundson, B. (2005). Forecasting support systems for the incorporation of event information: An empirical investigation. International Journal of Forecasting, 21(3), 411–423. https://doi.org/10.1016/j.ijforecast.2004.10.005
Wei, N., Li, C., Peng, X., Zeng, F., & Lu, X. (2019). Conventional models and artificial intelligence-based models for energy consumption forecasting: A review. Journal of Petroleum Science and Engineering, 181, 106187. https://doi.org/https://doi.org/10.1016/j.petrol.2019.106187
Wei Su, C., Wang, X.-Q., Tao, R., & Oana-Ramona, L. (2019). Do oil prices drive agricultural commodity prices? Further evidence in a global bio-energy context. Energy, 172, 691–701. https://doi.org/10.1016/j.energy.2019.02.028
Wei, W., & Hansen, M. (2006). An aggregate demand model for air passenger traffic in the hub-and-spoke network. Transportation Research Part A: Policy and Practice, 40(10), 841–851.
Wei, Wei, & Held, L. (2014). Calibration tests for count data. Test, 23, 787–805.
Weinberg, J., Brown, L. D., & Stroud, J. R. (2007). Bayesian forecasting of an inhomogeneous poisson process with applications to call center data. Journal of the American Statistical Association, 102(480), 1185–1198.
Weiß, C. H., Homburg, A., Alwan, L. C., Frahm, G., & Göb, R. (2021). Efficient accounting for estimation uncertainty in coherent forecasting of count processes. Journal of Applied Statistics, 0(0), 1–22.
Weiß, G. N., & Supper, H. (2013). Forecasting liquidity-adjusted intraday value-at-risk with vine copulas. Journal of Banking & Finance, 37(9), 3334–3350.
Wen, R., Torkkola, K., Narayanaswamy, B., & Madeka, D. (2017). A multi-horizon quantile recurrent forecaster. arXiv:1711.11053.
Weron, R. (2014). Electricity price forecasting: A review of the state-of-the-art with a look into the future. International Journal of Forecasting, 30(4), 1030–1081.
West, K. D. (1996). Asymptotic inference about predictive ability. Econometrica, 1067–1084. https://doi.org/10.2307/2171956
White, H. (2000). A reality check for data snooping. Econometrica, 68(5), 1097–1126. https://doi.org/10.1111/1468-0262.00152
Whitt, W., & Zhang, X. (2019). Forecasting arrivals and occupancy levels in an emergency department. Operations Research for Health Care, 21, 1–18.
Whittaker, J., Garside, S., & Lindveld, K. (1997). Tracking and predicting a network traffic process. International Journal of Forecasting, 13(1), 51–61.
Wicke, L., Dhami, M. K., Önkal, D., & Belton, I. K. (2019). Using scenarios to forecast outcomes of a refugee crisis. International Journal of Forecasting. https://doi.org/10.1016/j.ijforecast.2019.05.017
Wickham, R. (1995). Evaluation of forecasting techniques for short-term demand of air transportation (PhD thesis). Massachusetts Institute of Technology.
Wickramasuriya, S. L., Athanasopoulos, G., & Hyndman, R. J. (2019). Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. Journal of the American Statistical Association, 114(526), 804–19. https://doi.org/https://doi.org/10.1080/01621459.2018.1448825
Wilde, J., Chen, W., & Lohmann, S. (2020). COVID-19 and the future of US fertility: What can we learn from Google? (No. WP-2020-034). Max Planck Institute for Demographic Research, Rostock, Germany.
Wilkd, D. S. (2005). Statistical methods in the atmospheric sciences (2nd ed.). Elsevier.
Wilks, D. S. (2004). The minimum spanning tree histogram as verification tool for multidimensional ensemble forecasts. Montly Weather Review, 132, 1329–1340.
Wilks, D. S. (2019). Indices of rank histogram flatness and their sampling properties. Monthly Weather Review, 147(2), 763–769.
Willekens, F. (2018). Towards causal forecasting of international migration. Vienna Yearbook of Population Research, 16, 199–218.
Willemain, T. R., Smart, C. N., & Schwarz, H. F. (2004). A new approach to forecasting intermittent demand for service parts inventories. International Journal of Forecasting, 20(3), 375–387. https://doi.org/10.1016/S0169-2070(03)00013-X
Williams, L. V., & Reade, J. J. (2016). Forecasting elections. Journal of Forecasting, 35(4). https://doi.org/10.1002/for.2377
Wilms, I., Rombouts, J., & Croux, C. (2021). Multivariate volatility forecasts for stock market indices. International Journal of Forecasting, 37(2), 484–499.
Wind, Y. (Ed.). (1981). New product forecasting: Models and applications. Lexington, MA: Lexington Books.
Wingerden, E. van, Basten, R. J. I., Dekker, R., & Rustenburg, W. D. (2014). More grip on inventory control through improved forecasting: A comparative study at three companies. International Journal of Production Economics, 157, 220–237. https://doi.org/10.1016/j.ijpe.2014.08.018
Winkler, Robert L. (1972). A decision-theoretic approach to interval estimation. Journal of the American Statistical Association, 67(337), 187–191.
Winkler, Robert L., Grushka-Cockayne, Y., Lichtendahl, K. C., Jr, & Jose, V. R. R. (2019). Probability forecasts and their combination: A research perspective. Decision Analysis, 16(4), 239–260. https://doi.org/10.1287/deca.2019.0391
Winkler, R. L., Muñoz, J., Cervera, J. L., Bernardo, J. M., Blattenberger, G., Kadane, J. B., … Rı́os-Insua, D. (1996). Scoring rules and the evaluation of probabilities. Test, 5(1), 1–60. https://doi.org/10.1007/BF02562681
Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6(3), 324–342.
Wiśniowski, A., Smith, P. W. F., Bijak, J., Raymer, J., & Forster, J. J. (2015). Bayesian population forecasting: Extending the Lee-Carter method. Demography, 52(3), 1035–1059. https://doi.org/10.1007/s13524-015-0389-y
Wold, H. (1966). Estimation of principal components and related models by iterative least squares. In P. R. Krishnajah (Ed.), Multivariate analysis (pp. 391–420). New York: Academic Press.
Wolfers, J., & Zitzewitz, E. (2004). Prediction markets. The Journal of Economic Perspectives, 18(2), 107–126. https://doi.org/10.1257/0895330041371321
Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.
Wolters, M. H. (2015). Evaluating Point and Density Forecasts of DSGE Models. Journal of Applied Econometrics, 30(1), 74–96.
Wong, B. K., Bodnovich, T. A., & Selvi, Y. (1995). A bibliography of neural network business applications research: 1988-September 1994. Expert Systems, 12(3), 253–261. https://doi.org/10.1111/j.1468-0394.1995.tb00114.x
Wong-Fupuy, C., & Haberman, S. (2004). Projecting mortality trends: recent developments in the United Kingdom and the United States. North American Actuarial Journal, 8(2), 56–83.
Woodford, M. (2002). Imperfect common knowledge and the effects of monetary policy. In P. Aghion, R. Frydman, J. Stiglitz, & M. Woodford (Eds.), Knowledge, information, and expectations in modern macroeconomics: In honor of edmund phelps (pp. 25–58). Princeton University Press.
Wright, G., & Goodwin, P. (1999). Future‐focussed thinking: Combining scenario planning with decision analysis. Journal of Multi‐Criteria Decision Analysis, 8(6), 311–321.
Wright, G., & Goodwin, P. (2009). Decision making and planning under low levels of predictability: Enhancing the scenario method. International Journal of Forecasting, 25(4), 813–825. https://doi.org/10.1016/j.ijforecast.2009.05.019
Wright, M. J., & Stern, P. (2015). Forecasting new product trial with analogous series. Journal of Business Research, 68(8), 1732–1738.
Wu, C. C., & Liang, S. S. (2011). The economic value of range-based covariance between stock and bond returns with dynamic copulas. Journal of Empirical Finance, 18(4), 711–727. https://doi.org/10.1016/j.jempfin.2011.05.004
Wu, S., & Chen, R. (2007). Threshold variable determination and threshold variable driven switching autoregressive models. Statistica Sinica, 17(1), 241–S38.
Wu, W., Ma, X., Zeng, B., Wang, Y., & Cai, W. (2019). Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model. Renewable Energy, 140, 70–87. https://doi.org/10.1016/j.renene.2019.03.006
Wu, Y., Yu, W., Cui, Y., & Lu, C. (2020). Data integrity attacks against traffic modeling and forecasting in M2M communications. In ICC 2020-2020 IEEE international conference on communications (ICC) (pp. 1–6). IEEE.
Xiao, Y., & Han, J. (2016). Forecasting new product diffusion with agent-based models. Technological Forecasting and Social Change, 105, 167–178.
Xie, J., & Hong, T. (2016). GEFCom2014 probabilistic electric load forecasting: An integrated solution with forecast combination and residual simulation. International Journal of Forecasting, 32(3), 1012–1016.
Xie, T., & Ding, J. (2020). Forecasting with multiple seasonality. arXiv:2008.12340.
Xie, W., Yu, L., Xu, S., & Wang, S. (2006). A new method for crude oil price forecasting based on support vector machines. In International conference on computational science (pp. 444–451). Springer.
Xie, Y. (2000). Demography: Past, present, and future. Journal of the American Statistical Association, 95(450), 670–673. https://doi.org/10.2307/2669415
Xiong, T., Li, C., Bao, Y., Hu, Z., & Zhang, L. (2015). A combination method for interval forecasting of agricultural commodity futures prices. Knowledge-Based Systems, 77, 92–102. https://doi.org/10.1016/j.knosys.2015.01.002
Xu, R., & Wunsch, D., 2nd. (2005). Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(3), 645–678. https://doi.org/10.1109/TNN.2005.845141
Xu, W. (1999). Long range planning for call centers at Fedex. The Journal of Business Forecasting, 18(4), 7.
Xu, Y., Liu, H., & Long, Z. (2020). A distributed computing framework for wind speed big data forecasting on Apache Spark. Sustainable Energy Technologies and Assessments, 37, 100582.
Yaffee, R. A., Nikolopoulos, K., Reilly, D. P., Crone, S. F., Wagoner, K. D., Douglas, R. J., … Mills, J. N. (2011). An experiment in epidemiological forecasting: A comparison of forecast accuracies among different methods of forecasting deer mouse population densities in montana. In Federal forecaster’s brown bag lunch. https://doi.org/10.13140/2.1.3524.6089
Yagli, G. M., Yang, D., & Srinivasan, D. (2019). Reconciling solar forecasts: Sequential reconciliation. Solar Energy, 179, 391–397. https://doi.org/https://doi.org/10.1016/j.solener.2018.12.075
Yan, X. (Sterling)., & Zheng, L. (2017). Fundamental Analysis and the Cross-Section of Stock Returns: A Data-Mining Approach. The Review of Financial Studies, 30(4), 1382–1423.
Yang, D., & Zhang, Q. (2000). Drift-independent volatility estimation based on high, low, open, and close prices. Journal of Business, 73(3), 477–491. https://doi.org/10.1086/209650
Yang, Z., Zeng, Z., Wang, K., Wong, S.-S., Liang, W., Zanin, M., … He, J. (2020). Modified SEIR and AI prediction of the epidemics trend of COVID-19 in china under public health interventions. Journal of Thoracic Disease, 12(3), 165–174. https://doi.org/10.21037/jtd.2020.02.64
Yassine, A., Shirehjini, A. N., & Shirmohammadi, S. (2015). Smart meters big data: Game theoretic model for fair data sharing in deregulated smart grids. IEEE Access, 3, 2743–2754.
Yelland, P., Baz, Z. E., & Serafini, D. (2019). Forecasting at scale: The architecture of a modern retail forecasting system. Foresight: The International Journal of Applied Forecasting, 55, 10–18.
Yue, M. (2017). An integrated anomaly detection method for load forecasting data under cyberattacks. In 2017 IEEE power & energy society general meeting (pp. 1–5). IEEE.
Yue, M., Hong, T., & Wang, J. (2019). Descriptive analytics-based anomaly detection for cybersecure load forecasting. IEEE Transactions on Smart Grid, 10(6), 5964–5974.
Yusupova, A., Pavlidis, E., Paya, I., & Peel, D. (2020). UK housing price uncertainty index (HPU).
Yusupova, A., Pavlidis, N. G., & Pavlidis, E. G. (2019). Adaptive dynamic model averaging with an application to house price forecasting. arXiv:1912.04661.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.
Zagdański, A. (2001). Prediction intervals for stationary time series using the sieve bootstrap method. Demonstratio Mathematica, 34(2), 257–270.
Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A., … Stoica, I. (2016). Apache Spark: A unified engine for big data processing. Communications of the ACM, 59(11), 56–65.
Zaidi, A., Harding, A., & Williamson, P. (Eds.). (2009). New frontiers in microsimulation modelling. Farnham: Ashgate.
Zailani, S., Jeyaraman, K., Vengadasan, G., & Premkumar, R. (2012). Sustainable supply chain management (SSCM) in malaysia: A survey. International Journal of Production Economics, 140(1), 330–340.
Zaki, M. J. (2000). Scalable algorithms for association mining. IEEE Transactions on Knowledge and Data Engineering, 12(3), 372–390.
Zakoian, J.-M. (1994). Threshold heteroskedastic models. Journal of Economic Dynamics and Control, 18(5), 931–955. https://doi.org/10.1016/0165-1889(94)90039-6
Zang, H., Cheng, L., Ding, T., Cheung, K. W., Liang, Z., Wei, Z., & Sun, G. (2018). Hybrid method for short-term photovoltaic power forecasting based on deep convolutional neural network. IET Generation, Transmission and Distribution, 12(20), 4557–4567. https://doi.org/10.1049/iet-gtd.2018.5847
Zarnowitz, V. (1985). Rational expectations and macroeconomic forecasts. Journal of Business & Economic Statistics, 3(4), 293–311.
Zelterman, D. (1993). A semiparametric bootstrap technique for simulating extreme order statistics. Journal of the American Statistical Association, 88(422), 477–485.
Zhang, G. P., & Qi, M. (2005). Neural network forecasting for seasonal and trend time series. European Journal of Operational Research, 160(2), 501–514.
Zhang, G., Eddy Patuwo, B., & Y. Hu, M. (1998). Forecasting with artificial neural networks:: The state of the art. International Journal of Forecasting, 14(1), 35–62. https://doi.org/10.1016/S0169-2070(97)00044-7
Zhang, H., Song, H., Wen, L., & Liu, C. (2021). Forecasting tourism recovery amid COVID-19. Annals Of Tourism Research, 87, 103149. https://doi.org/10.1016/j.annals.2021.103149
Zhang, Junni L., & Bryant, J. (2019). Combining multiple imperfect data sources for small area estimation: A Bayesian model of provincial fertility rates in Cambodia. Statistical Theory and Related Fields, 3(2), 178–185. https://doi.org/10.1080/24754269.2019.1658062
Zhang, Ju-Liang, Chen, J., & Lee, C.-Y. (2008). Joint optimization on pricing, promotion and inventory control with stochastic demand. International Journal of Production Economics, 116(2), 190–198.
Zhang, J., Wei, Y.-M., Li, D., Tan, Z., & Zhou, J. (2018). Short term electricity load forecasting using a hybrid model. Energy, 158, 774–781. https://doi.org/10.1016/j.energy.2018.06.012
Zhang, L., Zhou, W.-D., Chang, P.-C., Yang, J.-W., & Li, F.-Z. (2013). Iterated time series prediction with multiple support vector regression models. Neurocomputing, 99, 411–422.
Zhang, S., Bauer, N., Yin, G., & Xie, X. (2020). Technology learning and diffusion at the global and local scales: A modeling exercise in the REMIND model. Technological Forecasting and Social Change, 151, 119765. https://doi.org/10.1016/j.techfore.2019.119765
Zhang, W., Qi, Y., Henrickson, K., Tang, J., & Wang, Y. (2017). Vehicle traffic delay prediction in ferry terminal based on bayesian multiple models combination method. Transportmetrica A: Transport Science, 13(5), 467–490.
Zhang, W., Zou, Y., Tang, J., Ash, J., & Wang, Y. (2016). Short-term prediction of vehicle waiting queue at ferry terminal based on machine learning method. Journal of Marine Science and Technology, 21(4), 729–741.
Zhang, X., & Hutchinson, J. (1994). Simple architectures on fast machines: Practical issues in nonlinear time series prediction. In A. S. Weigend & N. A. Gershenfeld (Eds.), Time series prediction forecasting the future and understanding the past (pp. 219–241). Santa Fe Institute; Addison-Wesley.
Zhang, Xiaoli, Peng, Y., Zhang, C., & Wang, B. (2015). Are hybrid models integrated with data preprocessing techniques suitable for monthly streamflow forecasting? Some experiment evidences. Journal of Hydrology, 530, 137–152. https://doi.org/10.1016/j.jhydrol.2015.09.047
Zhang, Y., & Nadarajah, S. (2018). A review of backtesting for value at risk. Communications in Statistics - Theory and Methods, 47(15), 3616–3639.
Zhang, Y., & Wang, J. (2018). A distributed approach for wind power probabilistic forecasting considering spatio-temporal correlation without directaccess to off-site information. IEEE Transactions on Power Systems, 33(5), 5714–5726.
Zhang, Yao, Wang, J., & Wang, X. (2014). Review on probabilistic forecasting of wind power generation. Renewable and Sustainable Energy Reviews, 32(0), 255–270. https://doi.org/http://dx.doi.org/10.1016/j.rser.2014.01.033
Zhang, & Ming. (2008). Artificial higher order neural networks for economics and business. IGI Global.
Zhao, H.-X., & Magoulès, F. (2012). A review on the prediction of building energy consumption. Renewable and Sustainable Energy Reviews, 16(6), 3586–3592. https://doi.org/https://doi.org/10.1016/j.rser.2012.02.049
Zheng, J., Xu, C., Zhang, Z., & Li, X. (2017). Electric load forecasting in smart grids using long-short-term-memory based recurrent neural network. In 2017 51st annual conference on information sciences and systems (CISS) (pp. 1–6). IEEE.
Zhou, C., & Viswanathan, S. (2011). Comparison of a new bootstrapping method with parametric approaches for safety stock determination in service parts inventory systems. International Journal of Production Economics, 133(1), 481–485. https://doi.org/10.1016/j.ijpe.2010.09.021
Zhou, L., Zhao, P., Wu, D., Cheng, C., & Huang, H. (2018). Time series model for forecasting the number of new admission inpatients. BMC Medical Informatics and Decision Making, 18(1), 39.
Zhou, Z., & Matteson, D. S. (2016). Predicting Melbourne ambulance demand using kernel warping. The Annals of Applied Statistics, 10(4), 1977–1996.
Zhu, S., Dekker, R., Jaarsveld, W. van, Renjie, R. W., & Koning, A. J. (2017). An improved method for forecasting spare parts demand using extreme value theory. European Journal of Operational Research, 261(1), 169–181. https://doi.org/10.1016/j.ejor.2017.01.053
Ziegel, J. F., & Gneiting, T. (2014). Copula calibration. Electronic Journal of Statistics, 8(2), 2619–2638.
Ziel, F., & Berk, K. (2019). Multivariate forecasting evaluation: On sensitive and strictly proper scoring rules. arXiv:1910.07325.
Ziel, F., & Steinert, R. (2016). Electricity price forecasting using sale and purchase curves: The X-Model. Energy Economics, 59, 435–454.
Ziel, F., & Steinert, R. (2018). Probabilistic mid-and long-term electricity price forecasting. Renewable and Sustainable Energy Reviews, 94, 251–266.
Ziel, F., & Weron, R. (2018). Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. Multivariate modeling frameworks. Energy Economics, 70, 396–420.
Zipf, G. K. (2016). Human behavior and the principle of least effort: An introduction to human ecology. Ravenio Books.
Žmuk, B., Dumičić, K., & Palić, I. (2018). Forecasting labour productivity in the European Union member states: Is labour productivity changing as expected? Interdisciplinary Description of Complex Systems, 16(3-B), 504–523.
Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 67, 301–320.
Zwijnenburg, J. (2015). Revisions of quarterly GDP in selected OECD countries. OECD Statistics Briefing, July 2015 - No. 22, 1–12.